HDB3(High Density Bipolar三階高密度雙極性)碼是在AMI碼的基礎(chǔ)上改進(jìn)的一種雙極性歸零碼,它除具有AMI碼功率譜中無直流分量,可進(jìn)行差錯(cuò)自檢等優(yōu)點(diǎn)外,還克服了AMI碼當(dāng)信息中出現(xiàn)連“0”碼時(shí)定時(shí)提取困難的缺點(diǎn),而且HDB3碼頻譜能量主要集中在基波頻率以下,占用頻帶較窄,是ITU-TG.703推薦的PCM基群、二次群和三次群的數(shù)字傳輸接口碼型,因此HDB3碼的編解碼就顯得極為重要了[1]。目前,HDB3碼主要由專用集成電路及相應(yīng)匹配的外圍中小規(guī)模集成芯片來實(shí)現(xiàn),但集成程度不高,特別是位同步提取非常復(fù)雜,不易實(shí)現(xiàn)。隨著可編程器件的發(fā)展,這一難題得到了很好地解決。
上傳時(shí)間: 2013-11-01
上傳用戶:lindor
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
上傳時(shí)間: 2013-11-21
上傳用戶:不懂夜的黑
This application note describes how to implement the Bus LVDS (BLVDS) interface in the supported Altera ® device families for high-performance multipoint applications. This application note also shows the performance analysis of a multipoint application with the Cyclone III BLVDS example.
標(biāo)簽: Implementing LVDS 522 Bus
上傳時(shí)間: 2013-10-26
上傳用戶:蘇蘇蘇蘇
Designing withProgrammable Logicin an Analog WorldProgrammable logic devices revolutionizeddigital design over 25 years ago,promising designers a blank chip todesign literally any function and programit in the field. PLDs can be low-logicdensity devices that use nonvolatilesea-of-gates cells called complexprogrammable logic devices (CPLDs)or they can be high-density devicesbased on SRAM look-up tables (LUTs)
標(biāo)簽: Solutions Analog Altera FPGAs
上傳時(shí)間: 2013-10-27
上傳用戶:fredguo
Designing withProgrammable Logicin an Analog WorldProgrammable logic devicesrevolutionized digital design over 25years ago, promising designers a blankchip to design literally any functionand program it in the field. PLDs canbe low-logic density devices that usenonvolatile sea-of-gates cells calledcomplex programmable logic devices(CPLDs) or they can be high-densitydevices based on SRAM look-up tables
標(biāo)簽: Solutions Analog Xilinx FPGAs
上傳時(shí)間: 2013-11-07
上傳用戶:suicone
The SDI standards are the predominant standards for uncompressed digital videointerfaces in the broadcast studio and video production center. The first SDI standard,SD-SDI, allowed standard-definition digital video to be transported over the coaxial cableinfrastructure initially installed in studios to carry analog video. Next, HD-SDI wasto support high-definition video. Finally, dual link HD-SDI and 3G-SDIdoubled the bandwidth of HD-SDI to support 1080p (50 Hz and 60 Hz) and other videoformats requiring more bandwidth than HD-SDI provides.
上傳時(shí)間: 2013-12-08
上傳用戶:liansi
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
標(biāo)簽: XAPP 740 AXI 互聯(lián)
上傳時(shí)間: 2013-11-23
上傳用戶:shen_dafa
XAPP520將符合2.5V和3.3V I/O標(biāo)準(zhǔn)的7系列FPGA高性能I/O Bank進(jìn)行連接 The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
上傳時(shí)間: 2013-11-06
上傳用戶:wentianyou
WP409利用Xilinx FPGA打造出高端比特精度和周期精度浮點(diǎn)DSP算法實(shí)現(xiàn)方案: High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP Algorithms with Xilinx FPGAs
上傳時(shí)間: 2013-10-21
上傳用戶:huql11633
Xilinx Next Generation 28 nm FPGA Technology Overview Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.
上傳時(shí)間: 2013-12-07
上傳用戶:bruce
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1