亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

MicroController

  • ADC Oversampling Techniques fo

    Luminary Micro provides an analog-to-digital converter (ADC) module on some members of theStellaris MicroController family. The hardware resolution of the ADC is 10 bits; however, due to noiseand other accuracy-diminishing factors, the true accuracy is less than 10 bits. This application noteprovides a software-based oversampling technique, resulting in an improved Effective Number OfBits (ENOB) in the conversion result. This document describes methods of oversampling an inputsignal, and the impact on precision and overall system performance.

    標(biāo)簽: Oversampling Techniques ADC fo

    上傳時(shí)間: 2013-12-17

    上傳用戶:zhyiroy

  • 基于PIC單片機(jī)的脈沖電源

    基于PIC單片機(jī)的脈沖電源:設(shè)計(jì)了一種金屬凝固過程用脈沖電源。該電源采用PIC16F877作為主控芯片,實(shí)現(xiàn)對窄脈沖電流幅值的檢測,以及時(shí)電流脈沖幅值根據(jù)模糊PID算法進(jìn)行閑環(huán)控制。使用結(jié)果表明:該電源的輸出脈沖波形良好,電流幅值穩(wěn)定,滿足合金材料凝固過程的工藝要求且運(yùn)行穩(wěn)定可靠。關(guān)鍵詞:脈沖電源;PIC16F877單片機(jī);模糊PID;閑環(huán)控制 Abstract:A kind of pulse power supply was designed which uses in the metal solidification process ..I11is power supply used PIC16F877 to take the master control chip reali on to the narrow pulse electric current peak-to-peak value examination,carried on the closed-loop control to the electric current pulse peak-to-peak value basis fuzzy PID algorithm.The use result indicated ,this power supply output se profile is good,and the electric current peak-to-p~k value is stable,It satisfies the alloy material solidification process the technological requirement and movement stable reliable,Key words:p se po wer supply;PIC16F877single-chip MicroController;f r PID;closed-loop control

    標(biāo)簽: PIC 單片機(jī) 脈沖電源

    上傳時(shí)間: 2013-10-27

    上傳用戶:xcy122677

  • 基于單片機(jī)的除塵控制器的設(shè)計(jì)

    基于單片機(jī)的除塵控制器的設(shè)計(jì):介紹通用控制儀的硬件組成和軟件設(shè)計(jì),闡述了系統(tǒng)的性能指標(biāo)和功能特點(diǎn)。該產(chǎn)品功能完善,可靠性高,具有很好的應(yīng)用前景。關(guān)鍵詞: 除塵器;通用控制儀;單片機(jī);系統(tǒng)設(shè)計(jì) Abstract: The hardware structure and the software design are introduced in this paper, and the performance index and the features of the system are expounded. It has comp rehensive functions, high reliability and good app lication.Key words: dust catcher; universal controller; MicroController; system design

    標(biāo)簽: 單片機(jī) 除塵 控制器

    上傳時(shí)間: 2013-11-16

    上傳用戶:ming52900

  • Emulating a synchronous serial

    The C500 MicroController family usually provides only one on-chip synchronous serialchannel (SSC). If a second SSC is required, an emulation of the missing interface mayhelp to avoid an external hardware solution with additional electronic components.The solution presented in this paper and in the attached source files emulates the mostimportant SSC functions by using optimized SW routines with a performance up to 25KBaud in Slave Mode with half duplex transmission and an overhead less than 60% atSAB C513 with 12 MHz. Due to the implementation in C this performance is not the limitof the chip. A pure implementation in assembler will result in a strong reduction of theCPU load and therefore increase the maximum speed of the interface. In addition,MicroControllers like the SAB C505 will speed up the interface by a factor of two becauseof an optimized architecture compared with the SAB C513.Moreover, this solution lays stress on using as few on-chip hardware resources aspossible. A more excessive consumption of those resources will result in a highermaximum speed of the emulated interface.Due to the restricted performance of an 8 bit MicroController a pin compatible solution isprovided only; the internal register based programming interface is replaced by a set ofsubroutine calls.The attached source files also contain a test shell, which demonstrates how to exchangeinformation between an on-chip HW-SSC and the emulated SW-SSC via 5 external wiresin different operation modes. It is based on the SAB C513 (Siemens 8 bit MicroController).A table with load measurements is presented to give an indication for the fraction of CPUperformance required by software for emulating the SSC.

    標(biāo)簽: synchronous Emulating serial

    上傳時(shí)間: 2014-01-31

    上傳用戶:z1191176801

  • USB Demonstration for DK3200 w

    The μPSD32xx family, from ST, consists of Flash programmable system devices with a 8032 MicroControllerCore. Of these, the μPSD3234A and μPSD3254A are notable for having a complete implementationof the USB hardware directly on the chip, complying with the Universal Serial Bus Specification, Revision1.1.This application note describes a demonstration program that has been written for the DK3200 hardwaredemonstration kit (incorporating a μPSD3234A device). It gives the user an idea of how simple it is to workwith the device, using the HID class as a ready-made device driver for the USB connection.IN-APPLICATION-PROGRAMMING (IAP) AND IN-SYSTEM-PROGRAMMING (ISP)Since the μPSD contains two independent Flash memory arrays, the Micro Controller Unit (MCU) can executecode from one memory while erasing and programming the other. Product firmware updates in thefield can be reliably performed over any communication channel (such as CAN, Ethernet, UART, J1850)using this unique architecture. For In-Application-Programming (IAP), all code is updated through theMCU. The main advantage for the user is that the firmware can be updated remotely. The target applicationruns and takes care on its own program code and data memory.IAP is not the only method to program the firmware in μPSD devices. They can also be programmed usingIn-System-Programming (ISP). A IEEE1149.1-compliant JTAG interface is included on the μPSD. Withthis, the entire device can be rapidly programmed while soldered to the circuit board (Main Flash memory,Secondary Boot Flash memory, the PLD, and all configuration areas). This requires no MCU participation.The MCU is completely bypassed. So, the μPSD can be programmed or reprogrammed any time, anywhere, even when completely uncommitted.Both methods take place with the device in its normal hardware environment, soldered to a printed circuitboard. The IAP method cannot be used without previous use of ISP, because IAP utilizes a small amountof resident code to receive the service commands, and to perform the desired operations.

    標(biāo)簽: Demonstration 3200 USB for

    上傳時(shí)間: 2014-02-27

    上傳用戶:zhangzhenyu

  • 對帶有uPSD3234A的DK3200的USB演示

    The μPSD32xx family, from ST, consists of Flash programmable system devices with a 8032 MicroController Core. Of these, the μPSD3234A and μPSD3254A are notable for having a complete implementation of the USB hardware directly on the chip, complying with the Universal Serial Bus Specification, Revision 1.1.This application note describes a demonstration program that has been written for the DK3200 hardware demonstration kit (incorporating a μPSD3234A device). It gives the user an idea of how simple it is to work with the device, using the HID class as a ready-made device driver for the USB connection.

    標(biāo)簽: 3234A uPSD 3234 3200

    上傳時(shí)間: 2014-04-03

    上傳用戶:lizhizheng88

  • An easy way to work with Exter

    Internal Interrupts are used to respond to asynchronous requests from a certain part of theMicroController that needs to be serviced. Each peripheral in the TriCore as well as theBus Control Unit, the Debug Unit, the Peripheral Control Processor (PCP) and the CPUitself can generate an Interrupt Request.So what is an external Interrupt?An external Interrupt is something alike as the internal Interrupt. The difference is that anexternal Interrupt request is caused by an external event. Normally this would be a pulseon Port0 or Port1, but it can be even a signal from the input buffer of the SSC, indicatingthat a service is requested.The User’s Manual does not explain this aspect in detail so this ApNote will explain themost common form of an external Interrupt request. This ApNote will show that there is aneasy way to react on a pulse on Port0 or Port1 and to create with this impulse an InterruptService Request. Later in the second part of the document, you can find hints on how todebounce impulses to enable the use of a simple switch as the input device.Note: You will find additional information on how to setup the Interrupt System in theApNote “First steps through the TriCore Interrupt System” (AP3222xx)1. It would gobeyond the scope of this document to explain this here, but you will find selfexplanatoryexamples later on.

    標(biāo)簽: Exter easy work with

    上傳時(shí)間: 2013-10-27

    上傳用戶:zhangyigenius

  • XA-S3 I2C driver software

    This application note demonstrates how to write an Inter Integrated Circuit bus driver (I2C) for the XA-S3 16-bitMicroController from Philips Semiconductors.Not only the driver software is given. This note also contains a set of (example) interface routines and a smalldemo application program. All together it offers the user a quick start in writing a complete I2C system applicationwith the PXAS3x.The driver routines support interrupt driven single master transfers. Furthermore, the routines are suitable foruse in conjunction with real time operating systems.

    標(biāo)簽: software driver XA-S I2C

    上傳時(shí)間: 2013-11-02

    上傳用戶:zw380105939

  • I2C slave routines for the 87L

    The 87LPC76X MicroController combines in a small package thebenefits of a high-performance MicroController with on-boardhardware supporting the Inter-Integrated Circuit (I2C) bus interface.The 87LPC76X can be programmed both as an I2C bus master, aslave, or both. An overview of the I2C bus and description of the bussupport hardware in the 87LPC76X MicroControllers appears inapplication note AN464, Using the 87LPC76X MicroController as anI2C Bus Master. That application note includes a programmingexample, demonstrating a bus-master code. Here we show anexample of programming the MicroController as an I2C slave.The code listing demonstrates communications routines for the87LPC76X as a slave on the I2C bus. It compliments the program inAN464 which demonstrates the 87LPC76X as an I2C bus master.One may demonstrate two 87LPC76X devices communicating witheach other on the I2C bus, using the AN464 code in one, and theprogram presented here in the other. The examples presented hereand in AN464 allow the 87LPC76X to be either a master or a slave,but not both. Switching between master and slave roles in amultimaster environment is described in application note AN435.The software for a slave on the bus is relatively simple, as theprocessor plays a relatively passive role. It does not initiate bustransfers on its own, but responds to a master initiating thecommunications. This is true whether the slave receives or transmitsdata—transmission takes place only as a response to a busmaster’s request. The slave does not have to worry about arbitrationor about devices which do not acknowledge their address. As theslave is not supposed to take control of the bus, we do not demandit to resolve bus exceptions or “hangups”. If the bus becomesinactive the processor simply withdraws, not interfering with themaster (or masters) on the bus which should (hopefully) try toresolve the situation.

    標(biāo)簽: routines slave I2C 87L

    上傳時(shí)間: 2013-11-19

    上傳用戶:shirleyYim

  • 87LPC76X的IIC從程序

    Presents short and simple I2C software routines that support onlyslave (rather than master or master & slave) operation and an ASMdemonstration program. The slave-only software in this app notecomplements the master mode software presented in AN464, Usingthe 87LPC76X MicroController as an I2C bus master.

    標(biāo)簽: 76X LPC IIC 87

    上傳時(shí)間: 2013-11-22

    上傳用戶:1039312764

主站蜘蛛池模板: 基隆市| 长汀县| 达孜县| 手机| 务川| 上林县| 平乐县| 环江| 武宁县| 甘洛县| 临沭县| 千阳县| 东海县| 油尖旺区| 集安市| 贞丰县| 吉隆县| 和静县| 萝北县| 房山区| 昭苏县| 涪陵区| 道孚县| 三亚市| 驻马店市| 霍山县| 洪泽县| 静宁县| 钟山县| 绥化市| 溧阳市| 涞水县| 永寿县| 杭锦后旗| 银川市| 朝阳县| 永城市| 山东| 门头沟区| 神农架林区| 前郭尔|