The MC68HC05K0 is a low cost, low pin countsingle chip microcomputer with 504 bytes of userROM and 32 bytes of RAM. The MC68HC05K0 isa member of the 68HC05K series of devices whichare available in 16-pin DIL or SOIC packages.It uses the same CPU as the other devices in the68HC05 family and has the same instructions andregisters. Additionally, the device has a 15-stagemulti-function timer and 10 general purposebi-directional I/0 lines. A mask option is availablefor software programmable pull-downs on all ofthe I/O pins and four of the pins are capable ofgenerating interrupts.The device is ideally suited for remote-controlkeyboard applications because the pull-downs andthe interrupt drivers on the port pins allowkeyboards to be built without any externalcomponents except the keys themselves. There isno need for external pull-up or pull-down resistors,or diodes for wired-OR interrupts, as these featuresare already designed into the device.
基于單片機(jī)的汽車(chē)多功能報(bào)警系統(tǒng)設(shè)計(jì)The Design of Automobile Multi-function AlarmingBased on Single Chip Computer劉法治趙明富寧睡達(dá)(河 南 科 技 學(xué) 院 ,新 鄉(xiāng) 453 00 3)摘要介紹了一種基于單片機(jī)控制的汽車(chē)多功能報(bào)警系統(tǒng),它能對(duì)汽車(chē)的潤(rùn)滑系統(tǒng)油壓、制動(dòng)系統(tǒng)氣壓、冷卻系統(tǒng)溫度、輪胎欠壓及防盜進(jìn)行自動(dòng)檢測(cè),并在發(fā)現(xiàn)異常情況時(shí),發(fā)出聲光報(bào)警。闡述了該報(bào)警系統(tǒng)的硬件組成及軟件設(shè)計(jì)方法。關(guān)鍵詞單片機(jī)傳感器數(shù)模轉(zhuǎn)換報(bào)警Abstract Am ulti-fimctiona utomobilea larnungs ystemb asedo ns inglec hipc omputerco ntorlis in torducedin th isp aper.Th eo ilpr essuero flu bricatesystem, air pressure of braking system, temperature of cooling system, under pressure of tyre and guard against theft, detected automaticaly場(chǎng)thesystem. Audio and visual alarms wil be provided under abnormal conditions廠The hardware composition and software design of the system, described.Keywords Singlec hipc omputer Sensor Digital-t-oanaloguec onversion Alarmin
汽車(chē)多功能報(bào)苦器硬件系統(tǒng)設(shè)計(jì)根據(jù) 系 統(tǒng) 實(shí)際需要和產(chǎn)品性?xún)r(jià)比,選用ATMEL公司新生產(chǎn)的采用CMOs工藝的低功耗、高性能8位單片機(jī)AT89S52作為系統(tǒng)的控制器。AT89S52的片內(nèi)有8k Bytes LSP Flash閃爍存儲(chǔ)器,可進(jìn)行100(〕次寫(xiě)、擦除操作;256Bytes內(nèi)部數(shù)據(jù)存儲(chǔ)器(RAM);3 2 根可編程輸N輸出線;2個(gè)可編程全雙工串行通道;看門(mén)狗(WTD)電路等。系統(tǒng)由傳感器、單片機(jī)、模數(shù)轉(zhuǎn)換器、無(wú)線信號(hào)發(fā)射電路、指示燈驅(qū)動(dòng)電路、聲光報(bào)警驅(qū)動(dòng)電KD一9563,發(fā)出三聲二閃光。并觸發(fā)一個(gè)高電平,驅(qū)動(dòng)無(wú)線信號(hào)發(fā)射電路。
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
為提升虛擬儀器傳輸速率與實(shí)時(shí)性能,擴(kuò)展監(jiān)測(cè)范圍,在VC的軟件平臺(tái)上設(shè)計(jì)了一種全功能虛擬示波器。與傳統(tǒng)虛擬示波器相比,該系統(tǒng)采用嵌入式系統(tǒng)完成信號(hào)采集,采用工業(yè)以太網(wǎng)為傳輸介質(zhì),通過(guò)線性插值算法和多線程編程思想,實(shí)現(xiàn)波形顯示、參數(shù)計(jì)算、頻譜分析以及波形存儲(chǔ)及回放功能。實(shí)驗(yàn)結(jié)果表明,該虛擬示波器可以實(shí)現(xiàn)20 kHz采樣頻率下的波形精確顯示,達(dá)到預(yù)期的各項(xiàng)指標(biāo)。
Abstract:
o enhance the transfer rate and real-time of virtual instrument performance, expand scope of monitoring, this paper uses the VCs software platform to design a fully functional virtual oscilloscope. Compared with traditional virtual oscilloscope, this system adopts the embedded system to complete the data acquisition, industrial Ethernet as the transmission medium used by the linear interpolation algorithm and multi-threaded programming ideas, namely to achieve waveform display, parameter calculation, spectrum analysis and waveform storage and playback. Experimental results show that the virtual oscilloscope can accurately display the waveform with 20kHz sampling frequency, and achieve the desired targets.
同步技術(shù)是跳頻通信系統(tǒng)的關(guān)鍵技術(shù)之一,尤其是在快速跳頻通信系統(tǒng)中,常規(guī)跳頻通信通過(guò)同步字頭攜帶相關(guān)碼的方法來(lái)實(shí)現(xiàn)同步,但對(duì)于快跳頻來(lái)說(shuō),由于是一跳或者多跳傳輸一個(gè)調(diào)制符號(hào),難以攜帶相關(guān)碼。對(duì)此引入雙跳頻圖案方法,提出了一種適用于快速跳頻通信系統(tǒng)的同步方案。采用短碼攜帶同步信息,克服了快速跳頻難以攜帶相關(guān)碼的困難。分析了同步性能,仿真結(jié)果表明該方案同步時(shí)間短、虛警概率低、捕獲概率高,同步性能可靠。
Abstract:
Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.
The NXP LPC315x combine an 180 MHz ARM926EJ-S CPU core, High-speed USB 2.0OTG, 192 KB SRAM, NAND flash controller, flexible external bus interface, an integratedaudio codec, Li-ion charger, Real-Time Clock (RTC), and a myriad of serial and parallelinterfaces in a single chip targeted at consumer, industrial, medical, and communicationmarkets. To optimize system power consumption, the LPC315x have multiple powerdomains and a very flexible Clock Generation Unit (CGU) that provides dynamic clockgating and scaling.The LPC315x is implemented as multi-chip module with two side-by-side dies, one fordigital fuctions and one for analog functions, which include a Power Supply Unit (PSU),audio codec, RTC, and Li-ion battery charger.
Today in many applications such as network switches, routers, multi-computers,and processor-memory interfaces, the ability to integrate hundreds of multi-gigabit I/Os is desired to make better use of the rapidly advancing IC technology.
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
Today’s digital systems combine a myriad of chips with different voltage configurations.Designers must interface 2.5V processors with 3.3V memories—both RAM and ROM—as wellas 5V buses and multiple peripheral chips. Each chip has specific power supply needs. CPLDsare ideal for handling the multi-voltage interfacing, but do require forethought to ensure correctoperation.