neural NETWORK 一個演示原理的代碼,便于初學者學習。
上傳時間: 2013-12-25
上傳用戶:181992417
k-step ahead predictions determined by simulation of the % one-step ahead neural NETWORK predictor. For NNARMAX % models the residuals are set to zero when calculating the % predictions. The predictions are compared to the observed output. %
標簽: ahead predictions determined simulation
上傳時間: 2016-12-27
上傳用戶:busterman
Produces a matrix of derivatives of NETWORK output w.r.t. % each NETWORK weight for use in the functions NNPRUNE and NNFPE.
標簽: NETWORK w.r.t. derivatives Produces
上傳時間: 2013-12-18
上傳用戶:sunjet
% Train a two layer neural NETWORK with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) NETWORKs can % be trained. % % Given a set of corresponding input-output pairs and an initial % NETWORK, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the NETWORK with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % NETWORK architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
標簽: Levenberg-Marquardt desired NETWORK neural
上傳時間: 2016-12-27
上傳用戶:jcljkh
This function applies the Optimal Brain Surgeon (OBS) strategy for % pruning neural NETWORK models of dynamic systems. That is NETWORKs % trained by NNARX, NNOE, NNARMAX1, NNARMAX2, or their recursive % counterparts.
標簽: function strategy Optimal Surgeon
上傳時間: 2013-12-19
上傳用戶:ma1301115706
Train a two layer neural NETWORK with a recursive prediction error % algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully % connected) NETWORKs can be trained. % % The activation functions can either be linear or tanh. The NETWORK % architecture is defined by the matrix NetDef , which has of two % rows. The first row specifies the hidden layer while the second % specifies the output layer.
標簽: recursive prediction algorithm Gauss-Ne
上傳時間: 2016-12-27
上傳用戶:ljt101007
8139 NETWORK card linux driver
上傳時間: 2016-12-28
上傳用戶:skhlm
structure EM算法 bayesian NETWORK structure learning
標簽: structure bayesian learning NETWORK
上傳時間: 2013-11-27
上傳用戶:ynsnjs
wireless sensor NETWORK 電磁感應部分電路設計參考
標簽: wireless NETWORK sensor 電磁感應
上傳時間: 2013-12-26
上傳用戶:sk5201314
wireless seneor NETWORK 超聲傳感器部分電路原理圖設計
標簽: wireless NETWORK seneor 超聲傳感器
上傳時間: 2014-01-01
上傳用戶:asdkin