亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

ONE-dimensional_OPTIMIZATION

  • 基于(英蓓特)STM32V100的串口程序

    This example provides a description of how  to use the USART with hardware flowcontrol and communicate with the Hyperterminal.First, the USART2 sends the TxBuffer to the hyperterminal and still waiting fora string from the hyperterminal that you must enter which must end by '\r'character (keypad ENTER button). Each byte received is retransmitted to theHyperterminal. The string that you have entered is stored in the RxBuffer array. The receivebuffer have a RxBufferSize bytes as maximum. The USART2 is configured as follow:    - BaudRate = 115200 baud      - Word Length = 8 Bits    - One Stop Bit    - No parity    - Hardware flow control enabled (RTS and CTS signals)    - Receive and transmit enabled    - USART Clock disabled    - USART CPOL: Clock is active low    - USART CPHA: Data is captured on the second edge     - USART LastBit: The clock pulse of the last data bit is not output to                      the SCLK pin

    標簽: V100 STM 100 32V

    上傳時間: 2013-10-31

    上傳用戶:yy_cn

  • Xilinx UltraScale:新一代架構滿足您的新一代架構需求(EN)

      中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    標簽: UltraScale Xilinx 架構

    上傳時間: 2013-11-21

    上傳用戶:wxqman

  • WP151 - Xilinx FPGA的System ACE配置解決方案

    Design techniques for electronic systems areconstantly changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.

    標簽: System Xilinx FPGA 151

    上傳時間: 2013-11-23

    上傳用戶:kangqiaoyibie

  • WP401-FPGA設計的DO-254

    The standard that governs the design of avioniccomponents and systems, DO-254, is one of the mostpoorly understood but widely applicable standardsin the avionic industry. While information on thegeneral aspects of the standard is easy to obtain, thedetails of exactly how to implement the standard aresketchy. And once an entity develops a process thatachieves compliance, the details of how compliancewas achieved become part of the intellectualproperty of that entity. This white paper focuses onthe details of developing a DO-254 compliantprocess for the design of FPGAs.

    標簽: FPGA 401 254 WP

    上傳時間: 2013-11-03

    上傳用戶:ysystc670

  • WP247 - Virtex-5系列高級封裝

    The exacting technological demands created byincreasing bandwidth requirements have given riseto significant advances in FPGA technology thatenable engineers to successfully incorporate highspeedI/O interfaces in their designs. One aspect ofdesign that plays an increasingly important role isthat of the FPGA package. As the interfaces get fasterand wider, choosing the right package has becomeone of the key considerations for the systemdesigner.

    標簽: Virtex 247 WP 高級封裝

    上傳時間: 2013-11-07

    上傳用戶:wanghui2438

  • Verilog編碼中的非阻塞性賦值

      One of the most misunderstood constructs in the Verilog language is the nonblockingassignment. Even very experienced Verilog designers do not fully understand how nonblockingassignments are scheduled in an IEEE compliant Verilog simulator and do not understand whenand why nonblocking assignments should be used. This paper details how Verilog blocking andnonblocking assignments are scheduled, gives important coding guidelines to infer correctsynthesizable logic and details coding styles to avoid Verilog simulation race conditions

    標簽: Verilog 編碼 非阻塞性賦值

    上傳時間: 2013-11-01

    上傳用戶:xzt

  • 通信的數學理論

    The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities.

    標簽: 通信

    上傳時間: 2013-11-11

    上傳用戶:xy@1314

  • Design Safe Verilog State Machine(Synplicity)

      One of the strengths of Synplify is the Finite State Machine compiler. This is a powerfulfeature that not only has the ability to automatically detect state machines in the sourcecode, and implement them with either sequential, gray, or one-hot encoding. But alsoperform a reachability analysis to determine all the states that could possibly bereached, and optimize away all states and transition logic that can not be reached.Thus, producing a highly optimal final implementation of the state machine.

    標簽: Synplicity Machine Verilog Design

    上傳時間: 2013-10-20

    上傳用戶:蒼山觀海

  • VHDL,Verilog,System verilog比較

      本文簡單討論并總結了VHDL、Verilog,System verilog 這三中語言的各自特點和區別As the number of enhancements to variousHardware Description Languages (HDLs) hasincreased over the past year, so too has the complexityof determining which language is best fora particular design. Many designers and organizationsare contemplating whether they shouldswitch from one HDL to another.

    標簽: Verilog verilog System VHDL

    上傳時間: 2014-03-03

    上傳用戶:zhtzht

  • CPLD和FPGA設計介紹

    Field Programmable Gate Arrays (FPGAs) are becoming a critical part of every system design. Many vendors offer many different architectures and processes. Which one is right for your design? How do you design one of these so that it works correctly and functions as you expect in your entire system? These are the questions that this paper sets out to answer.

    標簽: CPLD FPGA

    上傳時間: 2013-10-22

    上傳用戶:lmq0059

主站蜘蛛池模板: 桑日县| 青神县| 察雅县| 云阳县| 册亨县| 芒康县| 安多县| 正蓝旗| 西林县| 左贡县| 梅河口市| 京山县| 龙里县| 砚山县| 彭阳县| 陇西县| 琼结县| 手游| 嘉荫县| 山阴县| 鄂伦春自治旗| 新巴尔虎右旗| 渝中区| 谢通门县| 老河口市| 南平市| 西藏| 从化市| 永新县| 陇南市| 南开区| 达拉特旗| 通山县| 林芝县| 高尔夫| 上杭县| 遂昌县| 龙江县| 济阳县| 淮安市| 天台县|