Software Radio (SR) is one of the most important emerging technologies for the
future of wireless communication services. By moving radio functionality into
software, it promises to give flexible radio systems that are multi-service, multi-
standard, multi-band, reconfigurable and reprogrammable by software.
Today’s radios are matched to a particular class of signals that are well defined
bytheircarrierfrequencies,modulationformatsandbandwidths.Aradiotransmitter
today can only up convert signals with well-defined bandwidths over defined center
frequencies, while, on the other side of the communication chain, a radio receiver
can only down convert well-defined signal bandwidths, transmitted over specified
carrier frequencies.
The radio spectrum is one of the most precious resources which must be managed
to ensure efficient access for the wireless communication services which use it. The
allocation and management of spectrum are administered by the regulatory
authorities. Traditionally, spectrum allocation is carried out exclusively of its use in
large geographic areas and assigning frequency bands to specific users or service
providers is proved to be inefficient. Recently, substantial knowledge about
dynamic spectrum access scheme has been accumulated to enable efficient spectrum
sharing.
Wireless communications has become a field of enormous scientific and economic interest. Recent
success stories include 2G and 3G cellular voice and data services (e.g., GSM and UMTS), wireless
local area networks (WiFi/IEEE 802.11x), wireless broadband access (WiMAX/IEEE 802.16x), and
digital broadcast systems (DVB, DAB, DRM). On the physical layer side, traditional designs typically
assume that the radio channel remains constant for the duration of a data block. However, researchers
and system designers are increasingly shifting their attention to channels that may vary within a block.
In addition to time dispersion caused by multipath propagation, these rapidly time-varying channels
feature frequency dispersion resulting from the Doppler effect. They are, thus, often referred to as
being “doubly dispersive.”
Recent advances in wireless communication technologies have had a transforma-
tive impact on society and have directly contributed to several economic and social
aspects of daily life. Increasingly, the untethered exchange of information between
devices is becoming a prime requirement for further progress, which is placing an
ever greater demand on wireless bandwidth. The ultra wideband (UWB) system
marks a major milestone in this progress. Since 2002, when the FCC allowed the
unlicensed use of low-power, UWB radio signals in the 3.1–10.6GHz frequency
band, there has been significant synergistic advance in this technology at the cir-
cuits, architectural and communication systems levels. This technology allows for
devices to communicate wirelessly, while coexisting with other users by ensuring
that its power density is sufficiently low so that it is perceived as noise to other
users.
Resource allocation is an important issue in wireless communication networks. In
recent decades, cognitive radio technology and cognitive radio-based networks have
obtained more and more attention and have been well studied to improve spectrum
utilization and to overcomethe problem of spectrum scarcity in future wireless com-
munication systems. Many new challenges on resource allocation appear in cogni-
tive radio-based networks. In this book, we focus on effective solutions to resource
allocation in several important cognitive radio-based networks, including a cogni-
tive radio-basedopportunisticspectrum access network, a cognitiveradio-basedcen-
tralized network, a cognitive radio-based cellular network, a cognitive radio-based
high-speed vehicle network, and a cognitive radio-based smart grid.
EN 300220-1V2.4.1 Electromagnetic compatibility and Radio spectrum Matters (ERM);Short Range Devices (SRD);Radio equipment to be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW; Part 1: Technical characteristics and test methods