是否要先打開(kāi)ALLEGRO? 不需要(當(dāng)然你的機(jī)器須有CADENCE系統(tǒng))。生成完封裝后在你的輸出目錄下就會(huì)有幾千個(gè)器件(全部生成的話),默認(rèn)輸出目錄為c:\MySym\. Level里面的Minimum, Nominal, Maximum 是什么意思? 對(duì)應(yīng)ipc7351A的ABC封裝嗎? 是的 能否將MOST, NOMINAL, LEAST三種有差別的封裝在命名上也體現(xiàn)出差別? NOMINAL 的名稱最后沒(méi)有后綴,MOST的后綴自動(dòng)添加“M”,LEAST的后綴自動(dòng)添加“L”,你看看生成的庫(kù)名稱就知道了。(直插件以及特別的器件,如BGA等是沒(méi)有MOST和LEAST級(jí)別的,對(duì)這類器件只有NOMINAL) IC焊盤用長(zhǎng)方形好像比用橢圓形的好,能不能生成長(zhǎng)方形的? 嗯。。。。基本上應(yīng)該是非直角的焊盤比矩形的焊盤好,我記不得是AMD還是NS還是AD公司專門有篇文檔討論了這個(gè)問(wèn)題,如果沒(méi)有記錯(cuò)的話至少有以下好處:信號(hào)質(zhì)量好、更省空間(特別是緊密設(shè)計(jì)中)、更省錫量。我過(guò)去有一篇帖子有一個(gè)倒角焊盤的SKILL,用于晶振電路和高速器件(如DDR的濾波電容),原因是對(duì)寬度比較大的矩形用橢圓焊盤也不合適,這種情況下用自定義的矩形倒角焊盤就比較好了---你可以從網(wǎng)上另外一個(gè)DDR設(shè)計(jì)的例子中看到。 當(dāng)然,我已經(jīng)在程序中添加了一選擇項(xiàng),對(duì)一些矩形焊盤可以選擇倒角方式. 剛才試了一下,感覺(jué)器件的命名的規(guī)范性不是太好,另好像不能生成器件的DEVICE文件,我沒(méi)RUN完。。。 這個(gè)程序的命名方法基本參照IPC-7351,每個(gè)人都有自己的命名嗜好,仍是不好統(tǒng)一的;我是比較懶的啦,所以就盡量靠近IPC-7351了。 至于DEVICE,的選項(xiàng)已經(jīng)添加 (這就是批量程序的好處,代碼中加一行,重新生產(chǎn)的上千上萬(wàn)個(gè)封裝就都有新東西了)。 你的庫(kù)都是"-"的,請(qǐng)問(wèn)用過(guò)ALLEGRO的兄弟,你們的FOOTPRINT認(rèn)"-"嗎?反正我的ALLEGRO只認(rèn)"_"(下劃線) 用“-”應(yīng)該沒(méi)有問(wèn)題的,焊盤的命名我用的是"_"(這個(gè)一直沒(méi)改動(dòng)過(guò))。 部分絲印畫(huà)在焊盤上了。 絲印的問(wèn)題我早已知道,只是盡量避免開(kāi)(我有個(gè)可配置的SilkGap變量),不過(guò)工作量比較大,有些已經(jīng)改過(guò),有些還沒(méi)有;另外我沒(méi)有特別費(fèi)功夫在絲印上的另一個(gè)原因是,我通常最后用AUTO-SILK的來(lái)合并相關(guān)的層,這樣既方便快捷也統(tǒng)一各個(gè)器件的絲印間距,用AUTO-SILK的話絲印線會(huì)自動(dòng)避開(kāi)SOLDER-MASK的。 點(diǎn)擊allegro后命令行出現(xiàn)E- Can't change to directory: Files\FPM,什么原因? 我想你一定是將FPM安裝在一個(gè)含空格的目錄里面了,比如C:\Program Files\等等之類,在自定義安裝目錄的時(shí)候該目錄名不能含有空格,且存放生成的封裝的目錄名也不能含有空格。你如果用默認(rèn)安裝的話應(yīng)該是不會(huì)有問(wèn)題的, 默認(rèn)FPM安裝在C:\FPM,默認(rèn)存放封裝的目錄為C:\MYSYM 0.04版用spb15.51生成時(shí).allegro會(huì)死機(jī).以前版本的Allegro封裝生成器用spb15.51生成時(shí)沒(méi)有死機(jī)現(xiàn)象 我在生成MELF類封裝的時(shí)候有過(guò)一次死機(jī)現(xiàn)象,估計(jì)是文件操作錯(cuò)誤導(dǎo)致ALLEGRO死機(jī),原因是我沒(méi)有找到在skill里面直接生成SHAPE焊盤的方法(FLASH和常規(guī)焊盤沒(méi)問(wèn)題), 查了下資料也沒(méi)有找到解決方法,所以只得在外部調(diào)用SCRIPT來(lái)將就一下了。(下次我再查查看),用SCRIPT的話文件訪問(wèn)比較頻繁(幸好目前MELF類的器件不多). 解決辦法: 1、對(duì)MELF類器件單獨(dú)選擇生成,其它的應(yīng)該可以一次生成。 2、試試最新的版本(當(dāng)前0.05) 請(qǐng)說(shuō)明運(yùn)行在哪類器件的時(shí)候ALLEGRO出錯(cuò),如果不是在MELF附近的話,請(qǐng)告知,謝謝。 用FPM0.04生成的封裝好像文件都比較大,比如CAPC、RES等器件,都是300多K,而自己建的或采用PCB Libraries Eval生成的封裝一般才幾十K到100K左右,不知封裝是不是包含了更多的信息? 我的每個(gè)封裝文件包含了幾個(gè)文字層(REF,VAL,TOL,DEV,PARTNUMBER等),SILK和ASSEM也是分開(kāi)的,BOND層和高度信息,還有些定位線(在DISP層),可能這些越來(lái)越豐富的信息加大了生成文件的尺寸.你如果想看有什么內(nèi)容的話,打開(kāi)所有層就看見(jiàn)了(或REPORT) 非常感謝 LiWenHui 發(fā)現(xiàn)的BUG, 已經(jīng)找到原因,是下面這行: axlDBChangeDesignExtents( '((-1000 -1000) (1000 1000))) 有尺寸空間開(kāi)得太大,后又沒(méi)有壓縮的原因,現(xiàn)在生成的封裝也只有幾十K了,0.05版已經(jīng)修復(fù)這個(gè)BUG了。 Allegro封裝生成器0.04生成do-27封裝不正確,生成封裝的焊盤的位號(hào)為a,c.應(yīng)該是A,B或者1,2才對(duì). 呵呵,DIODE通常管腳名為AC(A = anode, C = cathode) 也有用AK 或 12的, 極少見(jiàn)AB。 除了DIODE和極個(gè)別插件以及BGA外,焊盤名字以數(shù)字為主, 下次我給DIODE一個(gè)選擇項(xiàng),可以選擇AC 或 12 或 AK, 至于TRANSISTER我就不去區(qū)分BCE/CBE/ECB/EBC/GDS/GSD/DSG/DGS/SGD/SDG等了,這樣會(huì)沒(méi)完沒(méi)了的,我將對(duì)TRANSISTER強(qiáng)制統(tǒng)一以數(shù)字編號(hào)了,如果用家非要改變,只得在生成庫(kù)后手工修改。
標(biāo)簽: Footprint Maker 0.08 FPM skill
上傳時(shí)間: 2018-01-10
上傳用戶:digitzing
Numerical Techniques in Electromagnetics Second Edition
標(biāo)簽: Electromagnetics Techniques Numerical in
上傳時(shí)間: 2018-07-12
上傳用戶:tcsxjsw
這是一個(gè)至深老教師總結(jié)的模擬電子資料,有興趣可以一看
標(biāo)簽: 模電
上傳時(shí)間: 2018-11-11
上傳用戶:chengwei8556
Modern Compiler Implementation in Java. Second Edition
標(biāo)簽: Implementation Compiler Edition Modern Second Java in
上傳時(shí)間: 2019-04-03
上傳用戶:zsx097
This book provides an overview of recent innovations and achievements in the broad areas of cyber-physical systems (CPS), including architecture, networking, systems, applications, security, and privacy. The book discusses various new CPS technologies from diverse aspects to enable higher level of innovation towards intelligent life. The book provides insight to the future integration, coordination and interaction between the physical world, the information world, and human beings. The book features contributions from renowned researchers and engineers, who discuss key issues from various perspectives, presenting opinions and recent CPS-related achievements.Investigates how to advance the development of cyber-physical systems Provides a joint consideration of other newly emerged technologies and concepts in relation to CPS like cloud computing, big data, fog computing, and crowd sourcing Includes topics related to CPS such as architecture, system, networking, application, algorithm, security and privacy
標(biāo)簽: Cyber-Physical Systems
上傳時(shí)間: 2019-04-21
上傳用戶:danyun
Second-Order Consensus in Multiagent Systems via Distributed Sliding Mode Control
上傳時(shí)間: 2019-07-24
上傳用戶:sjjy0220
Abstract—In the future communication applications, users may obtain their messages that have different importance levels distributively from several available sources, such as distributed storage or even devices belonging to other users. This scenario is the best modeled by the multilevel diversity coding systems (MDCS). To achieve perfect (information-theoretic) secrecy against wiretap channels, this paper investigates the fundamental limits on the secure rate region of the asymmetric MDCS (AMDCS), which include the symmetric case as a special case. Threshold perfect secrecy is added to the AMDCS model. The eavesdropper may have access to any one but not more than one subset of the channels but know nothing about the sources, as long as the size of the subset is not above the security level. The question of whether superposition (source separation) coding is optimal for such an AMDCS with threshold perfect secrecy is answered. A class of secure AMDCS (S-AMDCS) with an arbitrary number of encoders is solved, and it is shown that linear codes are optimal for this class of instances. However, in contrast with the secure symmetric MDCS, superposition is shown to be not optimal for S-AMDCS in general. In addition, necessary conditions on the existence of a secrecy key are determined as a design guideline.
標(biāo)簽: Fundamental Limits Secure Class on of
上傳時(shí)間: 2020-01-04
上傳用戶:kddlas
Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on sub- jects of how to design and build radiometer systems. This book, which is the second edition of a book originally published in 1989, attempts to fill this void.
標(biāo)簽: Radiometer Microwave Systems
上傳時(shí)間: 2020-05-23
上傳用戶:shancjb
Recently millimeter-wave bands have been postu- lated as a means to accommodate the foreseen extreme bandwidth demands in vehicular communications, which result from the dissemination of sensory data to nearby vehicles for enhanced environmental awareness and improved safety level. However, the literature is particularly scarce in regards to principled resource allocation schemes that deal with the challenging radio conditions posed by the high mobility of vehicular scenarios
標(biāo)簽: Communications Millimeter Wave V2V
上傳時(shí)間: 2020-05-23
上傳用戶:shancjb
Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on sub- jects of how to design and build radiometer systems. This book, which is the second edition of a book originally published in 1989, attempts to fill this void.
標(biāo)簽: Radiometer Microwave Analysis Systems Design
上傳時(shí)間: 2020-05-26
上傳用戶:shancjb
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1