摘要:本文詳細(xì)的介紹了基于施耐德Modicon Premium T PCX 57 PLC在郵政自動(dòng)化分揀系統(tǒng)中控制系統(tǒng)的應(yīng)用,系統(tǒng)的網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),工藝流程和信息采集等。關(guān)鍵詞:T PCX57 PLC FIPIO總線 OPC Momentum I/O模塊 分揀系統(tǒng)
標(biāo)簽: Modicon Premium PCX 分揀
上傳時(shí)間: 2013-11-10
上傳用戶:kristycreasy
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
標(biāo)簽: FPGA 安全系統(tǒng)
上傳時(shí)間: 2013-11-05
上傳用戶:維子哥哥
針對電液比例位置控制系統(tǒng)由于非線性和死區(qū)特性在實(shí)際控制中難以得到滿意的控制效果的現(xiàn)狀,本研究采用T-S模糊控制理論的原理設(shè)計(jì)了T-S模糊控制器對電液比例位置控制系統(tǒng)進(jìn)行控制。并以Matlab為平臺進(jìn)行了仿真實(shí)驗(yàn)。仿真結(jié)果表明采用T-S模糊控制的電液比例位置控制系統(tǒng)具有較好的控制效果
上傳時(shí)間: 2013-11-13
上傳用戶:daoxiang126
運(yùn)用三維全波電磁仿真軟件對甚低頻T形面型天線進(jìn)行電磁建模和仿真分析計(jì)算,分析了天線的輸入阻抗、有效高度、電容等電氣參數(shù)。在建模時(shí)考慮了鐵塔及不同頂容線模型的影響,并對有無鐵塔及不同鐵塔類型、以及天線不同形式時(shí)天線的輸入阻抗進(jìn)行對比分析。
上傳時(shí)間: 2013-10-13
上傳用戶:LouieWu
ARM MMU詳細(xì)圖解,ARM920T-technical reference manual。
標(biāo)簽: T-technical ARM reference manual
上傳時(shí)間: 2013-10-09
上傳用戶:qweqweqwe
This white paper discusses how market trends, the need for increased productivity, and new legislation have accelerated the use of safety systems in industrial machinery. This TÜV-qualified FPGA design methodology is changing the paradigms of safety designs and will greatly reduce development effort, system complexity, and time to market. This allows FPGA users to design their own customized safety controllers and provides a significant competitive advantage over traditional microcontroller or ASIC-based designs. Introduction The basic motivation of deploying functional safety systems is to ensure safe operation as well as safe behavior in cases of failure. Examples of functional safety systems include train brakes, proximity sensors for hazardous areas around machines such as fast-moving robots, and distributed control systems in process automation equipment such as those used in petrochemical plants. The International Electrotechnical Commission’s standard, IEC 61508: “Functional safety of electrical/electronic/programmable electronic safety-related systems,” is understood as the standard for designing safety systems for electrical, electronic, and programmable electronic (E/E/PE) equipment. This standard was developed in the mid-1980s and has been revised several times to cover the technical advances in various industries. In addition, derivative standards have been developed for specific markets and applications that prescribe the particular requirements on functional safety systems in these industry applications. Example applications include process automation (IEC 61511), machine automation (IEC 62061), transportation (railway EN 50128), medical (IEC 62304), automotive (ISO 26262), power generation, distribution, and transportation. 圖Figure 1. Local Safety System
標(biāo)簽: FPGA 安全系統(tǒng)
上傳時(shí)間: 2013-11-14
上傳用戶:zoudejile
針對一般測溫方法在進(jìn)行流體多點(diǎn)溫度測量時(shí)存在系統(tǒng)復(fù)雜,準(zhǔn)確度和速度難以兼顧的問題,提出了一種基于溫度-頻率(T-F)變換的測量系統(tǒng)。該系統(tǒng)使用PIC18F6722單片機(jī)控制MOS管開關(guān)陣列,使多個(gè)測點(diǎn)的熱敏電阻分別與TLC555構(gòu)成振蕩電路,將測點(diǎn)的溫度變化轉(zhuǎn)化為振蕩頻率的變化,使用8253計(jì)數(shù)芯片對TLC555的輸出信號進(jìn)行測量并產(chǎn)生中斷,單片機(jī)讀取8253計(jì)數(shù)值反演為測點(diǎn)溫度。實(shí)驗(yàn)表明,測點(diǎn)數(shù)目增多不會(huì)增加測量系統(tǒng)的復(fù)雜程度,通過設(shè)置8253的計(jì)數(shù)初值,可以在不改變硬件的情況下靈活選擇測量的準(zhǔn)確度和速度,滿足了流體多點(diǎn)精確快速測溫的需求。同時(shí)該系統(tǒng)具備簡潔實(shí)用,成本低的優(yōu)點(diǎn)。
上傳時(shí)間: 2013-10-23
上傳用戶:assef
windows server 2003 tcp ip protocols and services technical reference 最新window網(wǎng)絡(luò)編程資料
標(biāo)簽: protocols reference technical services
上傳時(shí)間: 2013-12-23
上傳用戶:txfyddz
8051微控制器上的 DES encryption/decryption used in IC smart cards. Software hasn t been validated and lacks in-line documentation.
標(biāo)簽: encryption decryption validated Software
上傳時(shí)間: 2015-01-13
上傳用戶:wangdean1101
T-SQL示例大全
標(biāo)簽: T-SQL
上傳時(shí)間: 2015-01-21
上傳用戶:chenjjer
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1