This application note covers the design considerations of a system using the performance
features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The
design focuses on high system throughput through the AXI Interconnect core with F
MAX
and
area optimizations in certain portions of the design.
The design uses five AXI video direct memory access (VDMA) engines to simultaneously move
10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p
format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video
TEST pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary
video timing signals. Data read by each AXI VDMA is sent to a common on-screen display
(OSD) core capable of multiplexing or overlaying multiple video streams to a single output video
stream. The output of the OSD core drives the DVI video display interface on the board.
Performance monitor blocks are added to capture performance data. All 10 video streams
moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are
controlled by a MicroBlaze™ processor.
The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the
Xilinx® ML605 Rev D evaluation board
針對傳統集成電路(ASIC)功能固定、升級困難等缺點,利用FPGA實現了擴頻通信芯片STEL-2000A的核心功能。使用ISE提供的DDS IP核實現NCO模塊,在下變頻模塊調用了硬核乘法器并引入CIC濾波器進行低通濾波,給出了DQPSK解調的原理和實現方法,推導出一種簡便的引入?仔/4固定相移的實現方法。采用模塊化的設計方法使用VHDL語言編寫出源程序,在Virtex-II Pro 開發板上成功實現了整個系統。測試結果表明該系統正確實現了STEL-2000A的核心功能。
Abstract:
To overcome drawbacks of ASIC such as fixed functionality and upgrade difficulty, FPGA was used to realize the core functions of STEL-2000A. This paper used the DDS IP core provided by ISE to realize the NCO module, called hard core multiplier and implemented CIC filter in the down converter, described the principle and implementation detail of the demodulation of DQPSK, and derived a simple method to introduce a fixed phase shift of ?仔/4. The VHDL source code was designed by modularity method , and the complete system was successfully implemented on Virtex-II Pro development board. TEST results indicate that this system successfully realize the core function of the STEL-2000A.
為了在CDMA系統中更好地應用QDPSK數字調制方式,在分析四相相對移相(QDPSK)信號調制解調原理的基礎上,設計了一種QDPSK調制解調電路,它包括串并轉換、差分編碼、四相載波產生和選相、相干解調、差分譯碼和并串轉換電路。在MAX+PLUSⅡ軟件平臺上,進行了編譯和波形仿真。綜合后下載到復雜可編程邏輯器件EPM7128SLC84-15中,測試結果表明,調制電路能正確選相,解調電路輸出數據與QDPSK調制輸入數據完全一致,達到了預期的設計要求。
Abstract:
In order to realize the better application of digital modulation mode QDPSK in the CDMA system, a sort of QDPSK modulation-demodulation circuit was designed based on the analysis of QDPSK signal modulation-demodulation principles. It included serial/parallel conversion circuit, differential encoding circuit, four-phase carrier wave produced and phase chosen circuit, coherent demodulation circuit, difference decoding circuit and parallel/serial conversion circuit. And it was compiled and simulated on the MAX+PLUSⅡ software platform,and downloaded into the CPLD of EPM7128SLC84-15.The TEST result shows that the modulation circuit can exactly choose the phase,and the output data of the demodulator circuit is the same as the input data of the QDPSK modulate. The circuit achieves the prospective requirement of the design.
UART 4 UART參考設計,Xilinx提供VHDL代碼 uart_vhdl
This zip file contains the following folders:
\vhdl_source -- Source VHDL files:
uart.vhd - top level file
txmit.vhd - transmit portion of uart
rcvr.vhd - - receive portion of uart
\vhdl_TESTfixture -- VHDL TESTbench files. This files only include the TESTbench behavior, they
do not instantiate the DUT. This can easily be done in a top-level VHDL
file or a schematic. This folder contains the following files:
txmit_tb.vhd -- TEST bench for txmit.vhd.
rcvr_tf.vhd -- TEST bench for rcvr.vhd.
The high defi nition multimedia interface (HDMI) is fastbecoming the de facto standard for passing digitalaudio and video data in home entertainment systems.This standard includes an I2C type bus called a displaydata channel (DDC) that is used to pass extended digitalinterface data (EDID) from the sinkdevice (such as adigital TV) to the source device (such as a digital A/Vreceiver). EDID includes vital information on the digitaldata formats that the sink device can accept. The HDMIspecifi cation requires that devices have less than 50pFof input capacitance on their DDC bus lines, which canbe very diffi cult to meet. The LTC®4300A’s capacitancebuffering feature allows devices to pass the HDMI DDCinput capacitance compliance TEST with ease.
Accurate measurement of the third order intercept pointfor low distortion IC products such as the LT5514 requirescertain precautions to be observed in the TEST setup andTESTing procedure. The LT5514 linearity performance ishigh enough to push the TEST equipment and TEST set-up totheir limits. A method for accurate measurement of thirdorder intermodulation products, IM3, with standard TESTequipment is outlined below.It is also important to correctly interpret the LT5514specification with respect to ROUT, and the impact ofdemo-board transmission-line termination loss whenevaluating the linearity performance, as explained in theLT5514 Datasheet and in Note 1 of this document.
在Multisim 10軟件環境下,設計一種由運算放大器構成的精確可控矩形波信號發生器,結合系統電路原理圖重點闡述了各參數指標的實現與測試方法。通過改變RC電路的電容充、放電路徑和時間常數實現了占空比和頻率的調節,通過多路開關投入不同數值的電容實現了頻段的調節,通過電壓取樣和同相放大電路實現了輸出電壓幅值的調節并提高了電路的帶負載能力,可作為頻率和幅值可調的方波信號發生器。Multisim 10仿真分析及應用電路測試結果表明,電路性能指標達到了設計要求。
Abstract:
Based on Multisim 10, this paper designed a kind of rectangular-wave signal generator which could be controlled exactly composed of operational amplifier, the key point was how to implement and TEST the parameter indicators based on the circuit diagram. The duty and the frequency were adjusted by changing the time constant and the way of charging and discharging of the capacitor, the width of frequency was adjusted by using different capacitors provided with multiple switch, the amplitude of output voltage was adjusted by sampling voltage and using in-phase amplifier circuit,the ability of driving loads was raised, the circuit can be used as squarewave signal generator whose frequency and amplitude can be adjusted. The final simulation results of Multisim 10 and the TESTs of applicable circuit show that the performance indicators of the circuit meets the design requirements.