Radio Frequency Integrated Circuit Design
I enjoyed reading this book for a number of reasons. One reason is that itaddresses high-speed analog design in the context of microwave issues. This isan advanced-level book, which should follow courses in basic circuits andtransmission lines. Most analog integrated circuit designers in the past workedon applications at low enough frequency that microwave issues did not arise.As a consequence, they were adept at lumped parameter circuits and often notcomfortable with circuits where waves travel in space. However, in order todesign radio frequency (RF) communications integrated circuits (IC) in thegigahertz range, one must deal with transmission lines at chip interfaces andwhere interconnections on chip are far apart. Also, impedance matching isaddressed, which is a topic that arises most often in microwave circuits. In mycareer, there has been a gap in comprehension between analog low-frequencydesigners and microwave designers. Often, similar issues were dealt with in twodifferent languages. Although this book is more firmly based in lumped-elementanalog circuit design, it is nice to see that microwave knowledge is brought inwhere necessary.Too many analog circuit books in the past have concentrated first on thecircuit side rather than on basic theory behind their application in communications.The circuits usually used have evolved through experience, without asatisfying intellectual theme in describing them. Why a given circuit works bestcan be subtle, and often these circuits are chosen only through experience. Forthis reason, I am happy that the book begins first with topics that require anintellectual approach—noise, linearity and filtering, and technology issues. Iam particularly happy with how linearity is introduced (power series). In therest of the book it is then shown, with specific circuits and numerical examples,how linearity and noise issues arise.
Abstract: Using a wafer-level package (WLP) can reduce the overall size and cost of your solution.However when using a WLP IC, the printed circuit board (PCB) layout can become more complex and, ifnot carefully planned, result in an unreliable design. This article presents some PCB designconsiderations and general recommendations for choosing a 0.4mm- or 0.5mm-pitch WLP for yourapplication.
Abstract: Some power architectures require the power supply sequencer (or system manager) to controldownstream power MOSFETs to allow power to flow into branch circuits. This application note explains howsystem power sequencing and level shifting can be accomplished using a low-voltage system manager
Abstract: Uses the MAX641 switching controller and an external discrete charge pump to step up the input voltage. This circuitcan service low loads and is efficient when the output is two, three, four times the input voltage. Adding the MAX627 MOSdriver can further increase the output current capability.
Abstract: Some types of loads require more current during startup than when running. Other loads can be limited to a lower-powercurrent during startup but require a higher operating current. This article describes an application circuit that automatically adjusts apower circuit’s overcurrent protection level up or down after startup is complete.
Linear Technology offers a variety of devices that simplifyconverting power from a USB cable, but the LTC®3455represents the highest level of functional integration yet. The LTC3455 seamlessly manages power flowbetween an AC adapter, USB cable and Li-ion battery,while complying with USB power standards, all from a4mm × 4mm QFN package. In addtion, two high efficiencysynchronous buck converters generate low voltage railswhich most USB-powered peripherals require. TheLTC3455 also provides power-on reset signals for themicroprocessor, a Hot SwapTM output for poweringmemory cards as well as an uncommitted gain blocksuitable for use as a low-battery comparator or an LDOcontroller. The PCB real estate required for the entire USBpower control circuit and two DC/DC converters is only225mm2.
Traditionally, an Electronic Circuit Breaker (ECB) comprisesa MOSFET, a MOSFET controller and a current senseresistor. The LTC®4213 does away with the sense resistorby using the RDS(ON) of the external MOSFET. The resultis a simple, small solution that offers a signifi cant lowinsertion loss advantage at low operating load voltage.The LTC4213 features two circuit breaking responses tovarying overload conditions with three selectable tripthresholds and a high side drive for an external N-channelMOSFET switch.
One of the fi rst lessons in a basic electronics coursecovers the symbols for resistors, capacitors, inductors,voltage sources and current sources. Althougheach symbol represents a functional component of areal-world circuit, only some of the symbols have directphysical counterparts. For instance, the three discretepassive devices—resistors, capacitors, inductors—canbe picked off a shelf and placed on a real board muchas their symbolic analogs appear in a basic schematic.Likewise, while voltage sources have no direct 2-terminalanalog, a voltage source can be easily built with an offthe-shelf linear regulator.
Photomultipliers (PMT), avalanche photodiodes (APD),ultrasonic transducers, capacitance microphones, radiationdetectors and similar devices require high voltage,low current bias. Additionally, the high voltage must bepristinely free of noise; well under a millivolt is a commonrequirement with a few hundred microvolts sometimesnecessary. Normally, switching regulator confi gurationscannot achieve this performance level without employingspecial techniques. One aid to achieving low noise is thatload currents rarely exceed 5mA. This freedom permitsoutput fi ltering methods that are usually impractical