The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty.
With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications.
Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.
Abstract: Engineers often wish that radio susceptibility (RS) or radio immunity could be cured with an antibiotic, a vaccine, or someform of cure-all. Unfortunately, solving the RS problem is not that easy. Indeed, the laws of physics apply. In this article we discusssources of RS. We also offer tips and hints to protect systems, power supplies, printed circuit boards (PCBs), and electroniccomponents from radio frequency interference.
This application note provides users with a general understanding of the SVF and XSVF fileformats as they apply to Xilinx devices. Some familiarity with IEEE STD 1149.1 (JTAG) isassumed. For information on using Serial Vector Format (SVF) and Xilinx Serial Vector Format(XSVF) files in embedded programming applications
-PID controller has been extensively
used in the industrial world. But in this controller it is difficult to tune the PID gains.
We apply the genetic algorithm(GA) to tune the PID gains. The GA is an optimization algorithm using the biotic genetics.
Most code samples included on this CD were developed with Microsoft Visual C++ version 5.0 and the Microsoft Windows CE Toolkit for Visual C++ version 5.0. The Sspi and Crypto samples were developed with Microsoft Visual C++ version 6.0 and the Microsoft Windows CE Toolkit for Visual C++ 6.0. The code in sample applications is ported for a Handheld PC, but the programming concepts that are presented apply to all Windows CE-based platforms.
ACKAGE INSTALL
===============
NOTE: if you get an error when installing TVideoGrabber on the component palette, probably that you
need to apply a Delphi update pack (see details in the "UPDATE PACKS" chapter below).
關于FPGA流水線設計的論文
This work investigates the use of very deep pipelines for
implementing circuits in FPGAs, where each pipeline
stage is limited to a single FPGA logic element (LE). The
architecture and VHDL design of a parameterized integer
array multiplier is presented and also an IEEE 754
compliant 32-bit floating-point multiplier. We show how to
write VHDL cells that implement such approach, and how
the array multiplier architecture was adapted. Synthesis
and simulation were performed for Altera Apex20KE
devices, although the VHDL code should be portable to
other devices. For this family, a 16 bit integer multiplier
achieves a frequency of 266MHz, while the floating point
unit reaches 235MHz, performing 235 MFLOPS in an
FPGA. Additional cells are inserted to synchronize data,
what imposes significant area penalties. This and other
considerations to apply the technique in real designs are
also addressed.
This book is intended for "hands-on" developers or advanced students interested in understanding the strategies and tactics of concurrent network programming using C++ and object-oriented design. We describe the key design dimensions, patterns, and principles needed to develop flexible and efficient concurrent networked applications quickly and easily. Our numerous C++ code examples reinforce the design concepts and illustrate concretely how to use the core classes in ACE right away. We also take you "behind the scenes" to understand how and why the IPC and concurrency mechanisms in the ACE toolkit are designed the way they are. This material will help to enhance your design skills and to apply C++ and patterns more effectively in your own object-oriented networked applications.
THE INFORMATION PROVIDED IN THE MICROSOFT KNOWLEDGE BASE IS
PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO
EVENT SHALL MICROSOFT CORPORATION OR ITS SUPPLIERS BE LIABLE FOR
ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF
MICROSOFT CORPORATION OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE EXCLUSION
OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES
SO THE FOREGOING LIMITATION MAY NOT apply.