carrier-phase synchronization can be approached in a
general manner by estimating the multiplicative distortion (MD) to which
a baseband received signal in an RF or coherent optical transmission
system is subjected. This paper presents a unified modeling and
estimation of the MD in finite-alphabet digital communication systems. A
simple form of MD is the camer phase exp GO) which has to be estimated
and compensated for in a coherent receiver. A more general case with
fading must, however, allow for amplitude as well as phase variations of
the MD.
We assume a state-variable model for the MD and generally obtain a
nonlinear estimation problem with additional randomly-varying system
parameters such as received signal power, frequency offset, and Doppler
spread. An extended Kalman filter is then applied as a near-optimal
solution to the adaptive MD and channel parameter estimation problem.
Examples are given to show the use and some advantages of this scheme.
This paper investigates the design of joint frequency
offset and carrier phase estimation of a multi-frequency time division
multiple access (MF-TDMA) demodulator that is applied to
a digital video broadcasting—return channel system via satellite
(DVB-RCS). The proposed joint estimation algorithm is based on
the interpolation technique for two correlation values in the frequency
and phase domains. This simple interpolation technique
can significantly improve frequency and phase resolution capabilities
of the proposed technique without increasing the number of
the correlation values. In addition, the overall block diagram of a
digital communications receiver for DVB-RCS is presented, which
was designed using the proposed estimation algorithms.
Index Terms—Carrier phase estimation, DVB-RCS, frequency
offset estimation, interpolation, joint estimation, MF-TDMA.
Combined Processing of
GPS, GLONASS, and SBAS
Code Phase and Carrier Phase Measurements
Lambert Wanninger, Stephan Wallstab-Freitag
Geodetic Institute, Dresden University of Technology, Germany
We address the problem of blind carrier frequency-offset (CFO) estimation in quadrature amplitude modulation,
phase-shift keying, and pulse amplitude modulation
communications systems.We study the performance of a standard
CFO estimate, which consists of first raising the received signal to
the Mth power, where M is an integer depending on the type and
size of the symbol constellation, and then applying the nonlinear
least squares (NLLS) estimation approach. At low signal-to noise
ratio (SNR), the NLLS method fails to provide an accurate CFO
estimate because of the presence of outliers. In this letter, we derive
an approximate closed-form expression for the outlier probability.
This enables us to predict the mean-square error (MSE) on CFO
estimation for all SNR values. For a given SNR, the new results
also give insight into the minimum number of samples required in
the CFO estimation procedure, in order to ensure that the MSE
on estimation is not significantly affected by the outliers.
分析了調幅信號和載波信號之間的相位差與調制信號的極性的對應關系,得出了相敏檢波電路輸出電壓的極性與調制信號的極性有對應關系的結論。為了驗證相敏檢波電路的這一特性,給出3 個電路方案,分別選用理想元件和實際元件,采用Multisim 對其進行仿真實驗,直觀形象地演示了相敏檢波電路的鑒相特性,是傳統的實際操作實驗所不可比擬的。關鍵詞:相敏檢波;鑒相特性;Multisim;電路仿真
Abstract : The corresponding relation between modulation signal polarity and difference phases of amplitudemodulated signal and the carrier signal ,the polarity of phase2sensitive detecting circuit output voltage and the polarity of modulation signal are correspondent . In order to verify this characteristic ,three elect ric circuit s plans are produced ,idea element s and actual element s are selected respectively. Using Multisim to carry on a simulation experiment ,and then demonst rating the phase detecting characteristic of the phase sensitive circuit vividly and directly. Which is t raditional practical experience cannot be com pared.Keywords :phase sensitive detection ;phase2detecting characteristic ;Multisim;circuit simulation
為了在CDMA系統中更好地應用QDPSK數字調制方式,在分析四相相對移相(QDPSK)信號調制解調原理的基礎上,設計了一種QDPSK調制解調電路,它包括串并轉換、差分編碼、四相載波產生和選相、相干解調、差分譯碼和并串轉換電路。在MAX+PLUSⅡ軟件平臺上,進行了編譯和波形仿真。綜合后下載到復雜可編程邏輯器件EPM7128SLC84-15中,測試結果表明,調制電路能正確選相,解調電路輸出數據與QDPSK調制輸入數據完全一致,達到了預期的設計要求。
Abstract:
In order to realize the better application of digital modulation mode QDPSK in the CDMA system, a sort of QDPSK modulation-demodulation circuit was designed based on the analysis of QDPSK signal modulation-demodulation principles. It included serial/parallel conversion circuit, differential encoding circuit, four-phase carrier wave produced and phase chosen circuit, coherent demodulation circuit, difference decoding circuit and parallel/serial conversion circuit. And it was compiled and simulated on the MAX+PLUSⅡ software platform,and downloaded into the CPLD of EPM7128SLC84-15.The test result shows that the modulation circuit can exactly choose the phase,and the output data of the demodulator circuit is the same as the input data of the QDPSK modulate. The circuit achieves the prospective requirement of the design.