構造哈夫曼樹 哈弗曼樹中沒有度為一的節點,是標準的二叉樹,所以有n個葉子結點時,需要一個長度為2n-1的一維數組存儲哈弗曼樹的結點。 (1)、n個葉子節點只有weight權值,處理非葉子節點,從ht[i](ht[1]~ht[n-1])中找到ht[i].weight最小的兩個節點ht[s1]和ht[s2],這就是Select(int n,int &s1,int & s2,HTNode *ht)函數完成的功能。 (2)、調用select函數,并將ht[s1]和ht[s2]作為ht[l]的左右子樹,即ht[s1]和ht[s2]雙親節點為ht[l],新的根節點的權值為其左右子樹權值之和, ht[l].weight=ht[s1].weight+ht[s2].weight
上傳時間: 2016-06-13
上傳用戶:ztj182002
ofdm信道特性 Channel transmission simulator Channel transmission simulator % % inputs: % sig2 - noise variance % Mt - number of Tx antennas % Mr - number of Rx antennas % x - vector of complex input symbols (for MIMO, this is a matrix, where each column % is the value of the antenna outputs at a single time instance) % H - frequency selective channel - represented in block-Toeplitz form for MIMO transmission % N - number of symbols transmitted in OFDM frame % % outputs: % y - vector of channel outputs (matrix for MIMO again, just like x matrix) % create noise vector sequence (each row is a different antenna, each column is a % different time index) note: noise is spatially and temporally white
標簽: transmission simulator Channel inputs
上傳時間: 2016-07-22
上傳用戶:kelimu
學上的基本神經元,人工的神經網絡也有基本的神經元。每個神經元有特定數量的輸入,也會為每個神經元設定權重(weight)。權重是對所輸入的資料的重要性的一個指標。然后,神經元會計算出權重合計值(net value),而權重合計值就是將所有輸入乘以它們的權重的合計。每個神經元都有它們各自的臨界值(threshold),而當權重合計值大于臨
標簽:
上傳時間: 2014-06-06
上傳用戶:luke5347
j2me設計的界面包,很漂亮實用。 light weight UI toolkit
標簽: j2me
上傳時間: 2013-12-21
上傳用戶:kristycreasy
* The keyboard is assumed to be a matrix having 4 rows by 6 columns. However, this code works for any * matrix arrangements up to an 8 x 8 matrix. By using from one to three of the column inputs, the driver * can support "SHIFT" keys. These keys are: SHIFT1, SHIFT2 and SHIFT3.
標簽: keyboard However assumed columns
上傳時間: 2016-11-14
上傳用戶:ardager
編寫一個Java程序,設計一個運輸工具類Transport,包含的成員屬性有:速度pace、載重量load;汽車類Vehicle是Transport的子類,其中包含的屬性有:車輪的個數wheels和車重weight;飛機Airplane類是Transport的子類其中包含的屬性有:機型enginertype和發動機數量enginers。每個類都有相關所有數據的輸出方法。
上傳時間: 2016-11-16
上傳用戶:miaochun888
This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %
標簽: generalization calculates prediction function
上傳時間: 2014-12-03
上傳用戶:maizezhen
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.
標簽: Levenberg-Marquardt desired network neural
上傳時間: 2016-12-27
上傳用戶:jcljkh
This function calculates Akaike s final prediction error % estimate of the average generalization error for network % models generated by NNARX, NNOE, NNARMAX1+2, or their recursive % counterparts. % % [FPE,deff,varest,H] = nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,skip,Chat) % produces the final prediction error estimate (fpe), the effective number % of weights in the network if it has been trained with weight decay, % an estimate of the noise variance, and the Gauss-Newton Hessian. %
標簽: generalization calculates prediction function
上傳時間: 2016-12-27
上傳用戶:腳趾頭
This software is a Matlab implementation of restricted sampling from Gaussian distribution, and sample x (column vector) from N(x_mu, x_var), restricted in x_min<=x<=x_max.
標簽: implementation distribution restricted Gaussian
上傳時間: 2016-12-30
上傳用戶:6546544