This is is a bridge IP core to interface the Tensilica PIF bus protocol with the OpenCores WishBone. It currently supports single-cycle as well as burst transfer operations. The core has been tested in a master-PIF slave-WB configuration.
標簽: Tensilica OpenCores interface the
上傳時間: 2013-12-21
上傳用戶:gonuiln
VHDL CODE FOR MULTY CYCLE
上傳時間: 2017-08-12
上傳用戶:GHF
Abstract: This application note describes how sampling clock jitter (time interval error or "TIE jitter") affectsthe performance of delta-sigma digital-to-analog converters (DACs). New insights explain the importanceof separately specifying low-frequency (< 2x passband frequency) and high-frequency or wideband (> 2xpassband frequency) jitter tolerance in these devices. The article also provides an application example ofa simple highly jittered cycle-skipped sampling clock and describes a method for generating a properbroadband jittered clock. The document then goes on to compare Maxim's audio DAC jitter tolerance tocompetitor audio DACs. Maxim's exceptionally high jitter tolerance allows very simple and low-cost sampleclock implementations.
上傳時間: 2013-10-25
上傳用戶:banyou
ANALOG INPUT BANDWIDTH is a measure of the frequencyat which the reconstructed output fundamental drops3 dB below its low frequency value for a full scale input. Thetest is performed with fIN equal to 100 kHz plus integer multiplesof fCLK. The input frequency at which the output is −3dB relative to the low frequency input signal is the full powerbandwidth.APERTURE JITTER is the variation in aperture delay fromsample to sample. Aperture jitter shows up as input noise.APERTURE DELAY See Sampling Delay.BOTTOM OFFSET is the difference between the input voltagethat just causes the output code to transition to the firstcode and the negative reference voltage. Bottom Offset isdefined as EOB = VZT–VRB, where VZT is the first code transitioninput voltage and VRB is the lower reference voltage.Note that this is different from the normal Zero Scale Error.CONVERSION LATENCY See PIPELINE DELAY.CONVERSION TIME is the time required for a completemeasurement by an analog-to-digital converter. Since theConversion Time does not include acquisition time, multiplexerset up time, or other elements of a complete conversioncycle, the conversion time may be less than theThroughput Time.DC COMMON-MODE ERROR is a specification which appliesto ADCs with differential inputs. It is the change in theoutput code that occurs when the analog voltages on the twoinputs are changed by an equal amount. It is usually expressed in LSBs.
上傳時間: 2013-11-12
上傳用戶:pans0ul
Abstract: Investment in smart meters and smart grid end equipment continues to grow worldwide as countriestry to make their electric delivery systems more efficient. However, as critical as the electric deliveryinfrastructure is, it is normally not secured and thus subject to attack. This article describes the concept oflife-cycle security—the idea that embedded equipment in the smart grid must have security designed into theentire life of the product, even back to the contract manufacturer. We also talk about how life-cycle securityapplies to embedded equipment in the smart grid. Potential threats are discussed, as are potential solutionsto mitigate the risks posed by those threats.
上傳時間: 2014-12-24
上傳用戶:熊少鋒
介紹了用單片機C 語言實現無功補償中電容組循環投切的基本原理和算法,并舉例說明。關鍵詞:循環投切;C51;無功補償中圖分類號: TM76 文獻標識碼: BAbstract: This paper introduces the aplication of C51 in the controlling of capacitorsuits cycle powered to be on and off in reactive compensation.it illustrate thefondamental principle and algorithm with example.Key words: cycle powered to be on and off; C51; reactive compensation 為提高功率因數,往往采用補償電容的方法來實現。而電容器的容量是由實時功率因數與標準值進行比較來決定的,實時功率因數小于標準值時,需投入電容組,實時功率因數大于標準值時,則需切除電容組。投切方式的不合理,會對電容器造成損壞,現有的控制器多采用“順序投切”方式,在這種投切方式下排序在前的電容器組,先投后切;而后面的卻后投先切。這不僅使處于前面的電容組經常處于運行狀態,積累熱量不易散失,影響其使用壽命,而且使后面的投切開關經常動作,同樣減少壽命。合理的投切方式應為“循環投切”。這種投切方式使先投入的運行的電容組先退出,后投的后切除,從而使各組電容及投切開關使用機率均等,降低了電容組的平均運行溫度,減少了投切開關的動作次數,延長了其使用壽命。
上傳時間: 2014-12-27
上傳用戶:hopy
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
上傳時間: 2013-10-23
上傳用戶:copu
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.
上傳時間: 2014-04-02
上傳用戶:han_zh
CodeWarrior Development Tool Suites are comprehensive integrated developmentenvironments (IDE) that provide a highly visual and automated framework toaccelerate the development of the most complex embedded applications. Acrossmost stages of the development cycle, we offer tools to help configure, debug andoptimize your design built on Freescale MPUs, MCUs, DSPs and DSCs. These toolsuites provide solutions to get your design up and running fast.
標簽: CodeWarrior 開發工具套件
上傳時間: 2013-11-07
上傳用戶:youlongjian0
The LPC4350/30/20/10 are ARM Cortex-M4 based microcontrollers for embeddedapplications. The ARM Cortex-M4 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC4350/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals, andincludes an internal prefetch unit that supports speculative branching. The ARMCortex-M4 supports single-cycle digital signal processing and SIMD instructions. Ahardware floating-point processor is integrated in the core.The LPC4350/30/20/10 include an ARM Cortex-M0 coprocessor, up to 264 kB of datamemory, advanced configurable peripherals such as the State Configurable Timer (SCT)and the Serial General Purpose I/O (SGPIO) interface, two High-speed USB controllers,Ethernet, LCD, an external memory controller, and multiple digital and analog peripherals
上傳時間: 2013-10-28
上傳用戶:15501536189