Allegro規(guī)則約束方法(以ddr為例)
標簽: Allegro_ddr 等長設置
上傳時間: 2013-07-08
上傳用戶:jjq719719
3D加速引擎是3D圖形加速系統(tǒng)的重要組成部分,以往在軟件平臺上對3D引擎的研究,實現(xiàn)了復雜的渲染模型和渲染算法,但這些復雜算法與模型在FPGA上綜合實現(xiàn)具有一定難度,針對FPGA的3D加速引擎設計及其平臺實現(xiàn)需要進一步研究。 本文在研究3D加速引擎結(jié)構(gòu)的基礎上,實現(xiàn)了基于FPGA的圖像處理平臺,使用模塊化的思想,利用IP核技術(shù)分析設計實現(xiàn)了3D加速管道及其他模塊,并進行了仿真、驗證、實現(xiàn)。 圖像處理平臺選用Virtex-Ⅳ FPGA為核心器件,并搭載了Hynix HY5DU573222F-25、AT91FR40162S、XCF32P VO48及其他組件。 為滿足3D加速引擎的實現(xiàn)與驗證,設計搭建的圖像處理平臺還實現(xiàn)了ddr-SDRAM控制器模塊、VGA輸出模塊、總線控制器模塊、命令解釋模塊、指令寄存器模塊及控制寄存器模塊。 3D加速引擎設計包含3D加速渲染管道、視角變換管道、基元讀取、頂點FIFO、基元FIFO、寫內(nèi)存等模塊。針對FPGA的特性,簡化、設計、實現(xiàn)了光照管道、紋理管道、著色管道和Alpha融合管道。 最后使用Modelsim進行了仿真測試和圖像處理平臺上的驗證,其結(jié)果表明3D加速引擎設計的大部分功能得到實現(xiàn),結(jié)果令人滿意。
上傳時間: 2013-07-30
上傳用戶:lepoke
隨著信息社會的發(fā)展,人們要處理的各種信息總量變得越來越大,尤其在處理大數(shù)據(jù)量與實時處理數(shù)據(jù)方面,對處理設備的要求是非常高的。為滿足這些要求,實時快速的各種CPU、處理板應運而生。這類CPU與板卡處理數(shù)據(jù)速度快,效率高,并且不斷的完善與發(fā)展。此類板卡要求與外部設備通訊,同時也要進行內(nèi)部的數(shù)據(jù)交換,于是板卡的接口設備調(diào)試與內(nèi)部數(shù)據(jù)交換也成為必須要完成的工作。本文所作的工作正是基于一種高速通用信號處理板的外部接口和內(nèi)部數(shù)據(jù)通道的設計。 本文首先介紹了通用信號處理板的應用開發(fā)背景,包括此類板卡使用的處理芯片、板上設備、發(fā)展概況以及和外部相連的各種總線概況,同時說明了本人所作的主要工作。 其次,介紹了PCI接口的有關(guān)規(guī)范,給出了通用信號處理板與CPCI的J1口的設計時序;介紹了ddr存儲器的概況、電平標準以及功能寄存器,并給出了與ddr.存儲器接口的設計時序;介紹了片上主要數(shù)據(jù)處理器件TS-202的有關(guān)概況,設計了板卡與DSP的接口時序。 再次,介紹了Altera公司FPGA的程序設計流程,并使用VHDL語言編程完成各個模塊之間的數(shù)據(jù)傳遞,并重點介紹了ddr控制核的編寫。 再次,介紹了WDM驅(qū)動程序的結(jié)構(gòu),程序設計方法等。 最后,通過從工控機向通用信號處理板寫連續(xù)遞增的數(shù)據(jù)驗證了整個系統(tǒng)已經(jīng)正常工作。實現(xiàn)了信號處理板內(nèi)部數(shù)據(jù)通道設計以及與外部接口的通訊;并且還提到了對此設計以后地完善與發(fā)展。 本文所作的工作如下: 1、設計完成了處理板各接口時序,使處理板可以從接口接受/發(fā)送數(shù)據(jù)。 2、完成了FPGA內(nèi)部的數(shù)據(jù)通道的設計,使數(shù)據(jù)可以從CPCI準確的傳送到DSP進行處理,并編寫了DSP的測試程序。 3、完成了ddr SDRAM控制核的VHDL程序編寫。 4、完成了PCI驅(qū)動程序的編寫。
標簽: FPGA 高速并行 信號處理板 數(shù)據(jù)接口
上傳時間: 2013-06-30
上傳用戶:唐僧他不信佛
雙基地合成孔徑雷達(簡稱雙基地SAR或Bistatic SAR)是一種新的成像雷達,也是當今SAR技術(shù)的一個發(fā)展方向,在軍用及民用領域都具有良好的應用前景,近年來成為研究的熱點。本文則側(cè)重于研究雙基地SAR的距離一多普勒(R-D)成像算法的實現(xiàn)。 在雙基地SAR系統(tǒng)及成像算法的研究方面,推導了雙基地SAR的系統(tǒng)分辨特性及雷達方程,分析了主要系統(tǒng)參數(shù)之間的約束關(guān)系。針對正側(cè)視機載雙基地SAR系統(tǒng),本文對距離一多普勒算法進行了推廣。最后得到點目標的仿真結(jié)果。 在成像算法的FPGA實現(xiàn)上,在System Generator環(huán)境下對算法進行定點仿真。完成距離一多普勒成像算法的硬件實現(xiàn),其中包括了FFT快速傅立葉變換、硬件乘法器、:Rocket I/O接口設計、DCM數(shù)字時鐘管理等主要部分。針對硬件實現(xiàn)的特點,對算法的部分運算進行了簡化。 為了對算法實現(xiàn)進行驗證,設計開發(fā)了該算法的硬件測試平臺。主要基于ML310評估板上XC2VP30芯片中嵌入的Power PC 405,完成其硬件部分的設計,主要包括了Aurora協(xié)議接口、RS-232串行接口、ddr RAM接口以及其它如中斷、時鐘等部分。
上傳時間: 2013-07-26
上傳用戶:是王洪文
ddr layout 指導,幫助大家進行ddr2的設計,特別是上到800M以上的時候能夠layout好就比較困難了。
上傳時間: 2013-04-24
上傳用戶:mj16166
雷達即無線電探測和測距。雷達裝在船上用于航行避讓、船舶定位和引航的稱為船用導航雷達。船用導航雷達是測定本船位置和預防沖撞事故所不可缺少的系統(tǒng)。它能夠準確捕獲其它船只、陸地、航線標志等物標信息,并將其顯示在顯示屏上。 本文圍繞船用導航雷達展開了研究,研究內(nèi)容分為以下幾個部分: 首先介紹了雷達的概念、基本原理和主要應用,而且詳細敘述了船用導航雷達的發(fā)展和工作原理及特性。 然后根據(jù)雷達的基本原理和船用導航雷達的特點,設計了基于FPGA、ARM、DSP的船用導航雷達系統(tǒng),并采用了ddr SDRAM存儲器。ARM、DSP和FPGA是當今主流的高速數(shù)字信號處理芯片,滿足了船用導航雷達系統(tǒng)的要求。 最后根據(jù)VGA顯示器的原理和雷達圖像的疊加原理,實現(xiàn)了基于FPGA的VGA雷達圖像疊加顯示,并得到了所需的雷達圖像。從結(jié)果可以看出,本系統(tǒng)的設計是符合要求的。
標簽: FPGA 嵌入式 導航雷達 顯示系統(tǒng)
上傳時間: 2013-07-20
上傳用戶:dwzjt
內(nèi)部存儲器負責計算機系統(tǒng)內(nèi)部數(shù)據(jù)的中轉(zhuǎn)、存儲與讀取,作為計算機系統(tǒng)中必不可少的三大件之一,它對計算機系統(tǒng)性能至關(guān)重要。內(nèi)存可以說是CPU處理數(shù)據(jù)的“大倉庫”,所有經(jīng)過CPU處理的指令和數(shù)據(jù)都要經(jīng)過內(nèi)存?zhèn)鬟f到電腦其他配件上,因此內(nèi)存性能的好壞,直接影響到系統(tǒng)的穩(wěn)定性和運行性能。在當今的電子系統(tǒng)設計中,內(nèi)存被使用得越來越多,并且對內(nèi)存的要求越來越高。既要求內(nèi)存讀寫速度盡可能的快、容量盡可能的大,同時由于競爭的加劇以及利潤率的下降,人們希望在保持、甚至提高系統(tǒng)性能的同時也能降低內(nèi)存產(chǎn)品的成本。面對這種趨勢,設計和實現(xiàn)大容量高速讀寫的內(nèi)存顯得尤為重要。因此,近年來內(nèi)存產(chǎn)品正經(jīng)歷著從小容量到大容量、從低速到高速的不斷變化,從技術(shù)上也就有了從DRAM到SDRAM,再到ddr SDRAM及ddr2 SDRAM等的不斷演進。和普通SDRAM的接口設計相比,ddr2 SDRAM存儲器在獲得大容量和高速率的同時,對存儲器的接口設計也提出了更高的要求,其接口設計復雜度也大幅增加。一方面,由于I/O塊中的資源是有限的,數(shù)據(jù)多路分解和時鐘轉(zhuǎn)換邏輯必須在FPGA核心邏輯中實現(xiàn),設計者可能不得不對接口邏輯進行手工布線以確保臨界時序。而另一方面,不得不處理好與ddr2接口有關(guān)的時序問題(包括溫度和電壓補償)。要正確的實現(xiàn)ddr2接口需要非常細致的工作,并在提供設計靈活性的同時確保系統(tǒng)性能和可靠性。 本文對通過Xilinx的Spartan3 FPGA實現(xiàn)ddr2內(nèi)存接口的設計與實現(xiàn)進行了詳細闡述。通過Xilinx FPGA提供了I/O模塊和邏輯資源,從而使接口設計變得更簡單、更可靠。本設計中對I/O模塊及其他邏輯在RTL代碼中進行了配置、嚴整、執(zhí)行,并正確連接到FPGA上,經(jīng)過仔細仿真,然后在硬件中驗證,以確保存儲器接口系統(tǒng)的可靠性。
上傳時間: 2013-06-08
上傳用戶:fairy0212
·摘要: DDB SDRAM使用雙倍數(shù)據(jù)速率結(jié)構(gòu),它能獲得比SDRAM更高的性能.ddr SDRAM需要特定的DDB控制器才能完成與DSP、FPGA之間的通信.由于Xilinx VirtexTM-4系列FPGA具備ChipSync源同步技術(shù)等優(yōu)勢,本設計采用它來實現(xiàn)ddrSDRAM控制器.該ddr SDRAM控制器采用直接時鐘數(shù)據(jù)捕獲技術(shù),本文將重點闡述該技術(shù).
標簽: Xilinx_FPGA ddr_SDRAM 控制器
上傳時間: 2013-05-24
上傳用戶:zxc23456789
第二部分:DRAM 內(nèi)存模塊的設計技術(shù)..............................................................143第一章 SDR 和ddr 內(nèi)存的比較..........................................................................143第二章 內(nèi)存模塊的疊層設計.............................................................................145第三章 內(nèi)存模塊的時序要求.............................................................................1493.1 無緩沖(Unbuffered)內(nèi)存模塊的時序分析.......................................1493.2 帶寄存器(Registered)的內(nèi)存模塊時序分析...................................154第四章 內(nèi)存模塊信號設計.................................................................................1594.1 時鐘信號的設計.......................................................................................1594.2 CS 及CKE 信號的設計..............................................................................1624.3 地址和控制線的設計...............................................................................1634.4 數(shù)據(jù)信號線的設計...................................................................................1664.5 電源,參考電壓Vref 及去耦電容.........................................................169第五章 內(nèi)存模塊的功耗計算.............................................................................172第六章 實際設計案例分析.................................................................................178 目前比較流行的內(nèi)存模塊主要是這三種:SDR,ddr,RAMBUS。其中,RAMBUS內(nèi)存采用阻抗受控制的串行連接技術(shù),在這里我們將不做進一步探討,本文所總結(jié)的內(nèi)存設計技術(shù)就是針對SDRAM 而言(包括SDR 和ddr)。現(xiàn)在我們來簡單地比較一下SDR 和ddr,它們都被稱為同步動態(tài)內(nèi)存,其核心技術(shù)是一樣的。只是ddr 在某些功能上進行了改進,所以ddr 有時也被稱為SDRAM II。ddr 的全稱是Double Data Rate,也就是雙倍的數(shù)據(jù)傳輸率,但是其時鐘頻率沒有增加,只是在時鐘的上升和下降沿都可以用來進行數(shù)據(jù)的讀寫操作。對于SDR 來說,市面上常見的模塊主要有PC100/PC133/PC166,而相應的ddr內(nèi)存則為ddr200(PC1600)/ddr266(PC2100)/ddr333(PC2700)。
上傳時間: 2014-01-13
上傳用戶:euroford
CMOS 邏輯系統(tǒng)的功耗主要與時脈頻率、系統(tǒng)內(nèi)各閘極輸入電容及電源電壓有關(guān),裝置尺寸縮小後,電源電壓也隨之降低,使得閘極大幅降低功耗。這種低電壓裝置擁有更低的功耗和更高的運作速度,因此系統(tǒng)時脈頻率可升高至 Ghz 範圍。
上傳時間: 2013-10-14
上傳用戶:immanuel2006
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1