本程序主要表現了C++多文件系統的MCU構建方法,任何支持C++的MCU/ARM/DSP都可用 此法構建。 特別要注意變量的重復定義問題: 最好每個C/CPP文件包含與自己同名的H頭文件,在其H頭文件中再包含一個中間 起橋梁作用的H頭文件,我一般喜歡main.h 變量或函數要在C/CPP中定義,絕對不要在H頭文件中定義! 但一定要在H頭文件中用extern加變量或函數聲明。
上傳時間: 2013-10-12
上傳用戶:dingdingcandy
熟悉VB的朋友對使用ActiveX控件一定不會陌生,眾多控件極大地方便了編程,但唯一的缺陷是不能動態加載控件,必須在設計時通過引用,將控件放置在窗體上。VB6.0已能夠解決該問題,只是幫助中沒有明確說明,并且沒有描述到一些關鍵功能,由于以前的版本中可以動態創建進程外服務:如果對象是外部可創建的,可在 Set 語句中用 New 關鍵字、CreateObject 或 GetObject 從部件外面將對象引用賦予變量。如果對象是從屬對象,則需使用高層對象的方法,在 Set 語句中指定一個對象引用:
上傳時間: 2014-01-26
上傳用戶:taa123456
一下就是pcb源博自動拼板開料系統下載資料介紹說明: 一、約定術語: 大板(Sheet)(也叫板料):是制造印制電路板的基板材料,也叫覆銅板,有多種規格。如:1220X1016mm。 拼板(Panel)(也叫生產板):由系統根據拼板設定的的范圍(拼板最大長度、最小長度和拼板最大寬度、最小寬度)自動生成; 套板(Unit):有時是客戶定單的產品尺寸(Width*Height);有時是由多個客戶定單的產品尺寸組成(當客戶定單的尺寸很小時即常說的連片尺寸)。一個套板由一個或多個單元(Pcs)組成; 單元(Pcs): 客戶定單的產品尺寸。 套板間距(DX、DY)尺寸 :套板在拼板中排列時,兩個套板之間的間隔。套板長度與長度方向之間的間隔叫DX尺寸;套板寬度與寬度方向之間的間隔叫DY尺寸。 拼板工藝邊(DX、DY)尺寸(也叫工作邊或夾板邊):套板與拼板邊緣之間的尺寸。套板長度方向與拼板邊緣之間的尺寸叫DX工藝邊;套板寬度方向與拼板邊緣之間的尺寸叫DY工藝邊。 單元數/每套:每個套板包含有多少個單元 規定套板數:在開料時規定最大拼板包含多少個套板 套板混排:在一個拼板里面,允許一部份套板橫排,一部份套板豎排。 開料模式:開料后,每一種板材都有幾十種開料情況,甚至多達幾百種開料情況。怎樣從中選出最優的方案?根據大部份PCB廠的開料經驗,我們總結出了5種開料模式:1為單一拼板不混排;2為單一拼板允許混排;3、4、5開料模式都是允許二至三種拼板,但其排列的方式和計算的方法可能不同(從左上角開始向右面和下面分、從左到右、從上到下、或兩者結合)在后面的拼板合并 中有開料模式示意圖。其中每一種開料模式都選出一種最優的方案,所以每一種板材就顯示5種開料方案。(選擇的原則是:在允許的拼板種類范圍內,拼板數量最少、拼板最大、拼板的種類最少。) 二、 開料方式介紹(開料方式共有四個選項): 1、單一拼板:只開一種拼板。 2、最多兩種拼板:開料時最多有兩種拼板。 3、允許三種拼板:開料時最多可開出三種拼板。(也叫ABC板) 4、使用詳細算法:該選項主要作用:當套板尺寸很小時(如:50X20),速度會比較慢,可以采用去掉詳細算法選項,速度就會比較快且利用率一般都一樣。建議:如產品尺寸小于50mm時,采用套板設定(即連片開料)進行開料,或去掉使用詳細算法選項進行開料。 三、 開料方法的選擇 1、常規開料:主要用于產品的尺寸就是套板尺寸,或人為確定了套板尺寸 直接輸入套板尺寸,確定套板間距(DX、DY)尺寸,確定拼板工藝邊(DX、DY)尺寸,選擇生產板材(板料)尺寸,用鼠標點擊開料(cut)按鈕即可開料。 2、套板設定開料(連片開料):主要用于產品尺寸較小,由系統自動選擇最佳套板尺寸。 套板設定開料 可以根據套板的參數選擇不同套板來開料,從而確定那一種套板最好,利用率最高。從而提高板料利用率,又方便生產。
上傳時間: 2013-10-24
上傳用戶:saharawalker
注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言. 2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\ 所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。
上傳時間: 2013-10-08
上傳用戶:dingdingcandy
一下就是pcb源博自動拼板開料系統下載資料介紹說明: 一、約定術語: 大板(Sheet)(也叫板料):是制造印制電路板的基板材料,也叫覆銅板,有多種規格。如:1220X1016mm。 拼板(Panel)(也叫生產板):由系統根據拼板設定的的范圍(拼板最大長度、最小長度和拼板最大寬度、最小寬度)自動生成; 套板(Unit):有時是客戶定單的產品尺寸(Width*Height);有時是由多個客戶定單的產品尺寸組成(當客戶定單的尺寸很小時即常說的連片尺寸)。一個套板由一個或多個單元(Pcs)組成; 單元(Pcs): 客戶定單的產品尺寸。 套板間距(DX、DY)尺寸 :套板在拼板中排列時,兩個套板之間的間隔。套板長度與長度方向之間的間隔叫DX尺寸;套板寬度與寬度方向之間的間隔叫DY尺寸。 拼板工藝邊(DX、DY)尺寸(也叫工作邊或夾板邊):套板與拼板邊緣之間的尺寸。套板長度方向與拼板邊緣之間的尺寸叫DX工藝邊;套板寬度方向與拼板邊緣之間的尺寸叫DY工藝邊。 單元數/每套:每個套板包含有多少個單元 規定套板數:在開料時規定最大拼板包含多少個套板 套板混排:在一個拼板里面,允許一部份套板橫排,一部份套板豎排。 開料模式:開料后,每一種板材都有幾十種開料情況,甚至多達幾百種開料情況。怎樣從中選出最優的方案?根據大部份PCB廠的開料經驗,我們總結出了5種開料模式:1為單一拼板不混排;2為單一拼板允許混排;3、4、5開料模式都是允許二至三種拼板,但其排列的方式和計算的方法可能不同(從左上角開始向右面和下面分、從左到右、從上到下、或兩者結合)在后面的拼板合并 中有開料模式示意圖。其中每一種開料模式都選出一種最優的方案,所以每一種板材就顯示5種開料方案。(選擇的原則是:在允許的拼板種類范圍內,拼板數量最少、拼板最大、拼板的種類最少。) 二、 開料方式介紹(開料方式共有四個選項): 1、單一拼板:只開一種拼板。 2、最多兩種拼板:開料時最多有兩種拼板。 3、允許三種拼板:開料時最多可開出三種拼板。(也叫ABC板) 4、使用詳細算法:該選項主要作用:當套板尺寸很小時(如:50X20),速度會比較慢,可以采用去掉詳細算法選項,速度就會比較快且利用率一般都一樣。建議:如產品尺寸小于50mm時,采用套板設定(即連片開料)進行開料,或去掉使用詳細算法選項進行開料。 三、 開料方法的選擇 1、常規開料:主要用于產品的尺寸就是套板尺寸,或人為確定了套板尺寸 直接輸入套板尺寸,確定套板間距(DX、DY)尺寸,確定拼板工藝邊(DX、DY)尺寸,選擇生產板材(板料)尺寸,用鼠標點擊開料(cut)按鈕即可開料。 2、套板設定開料(連片開料):主要用于產品尺寸較小,由系統自動選擇最佳套板尺寸。 套板設定開料 可以根據套板的參數選擇不同套板來開料,從而確定那一種套板最好,利用率最高。從而提高板料利用率,又方便生產。
上傳時間: 2013-11-11
上傳用戶:yimoney
電動加載系統存在系統不確定性因素,以及多余力矩。為更好解決由不確定性因素和擾動引起的系統控制問題,提出了基于前饋補償加魯棒控制的控制方法,針對舵機運動對加載系統跟蹤性能的影響,應用前饋控制對舵機運動擾動進行補償。通過仿真,揭示了控制器設計中的設計依據,結果表明該方法所設計系統具有很好的魯棒性,以及很好的抑制多余力矩能力。
上傳時間: 2013-10-26
上傳用戶:a296386173
基于改善快恢復二極管的的動態特性,通過對二極管的橫、縱向參數來進行分析,理論上提出了快恢復二極管的設計方法,并且結合SILVACO-TCAD仿真軟件進行驗證;得出了現代快恢復二極管應降低陽極濃度、減小基區少子壽命,采用加緩沖層的結論;這種結構極大的改善了快恢復二極管的正向導通特性,達到了優化動態特性的目的。
上傳時間: 2013-11-12
上傳用戶:xc216
注:1.這篇文章斷斷續續寫了很久,畫圖技術也不精,難免錯漏,大家湊合看.有問題可以留言. 2.論壇排版把我的代碼縮進全弄沒了,大家將代碼粘貼到arduino編譯器,然后按ctrl+T重新格式化代碼格式即可看的舒服. 一、什么是PWM PWM 即Pulse Wavelength Modulation 脈寬調制波,通過調整輸出信號占空比,從而達到改 變輸出平均電壓的目的。相信Arduino 的PWM 大家都不陌生,在Arduino Duemilanove 2009 中,有6 個8 位精度PWM 引腳,分別是3, 5, 6, 9, 10, 11 腳。我們可以使用analogWrite()控 制PWM 腳輸出頻率大概在500Hz 的左右的PWM 調制波。分辨率8 位即2 的8 次方等于 256 級精度。但是有時候我們會覺得6 個PWM 引腳不夠用。比如我們做一個10 路燈調光, 就需要有10 個PWM 腳。Arduino Duemilanove 2009 有13 個數字輸出腳,如果它們都可以 PWM 的話,就能滿足條件了。于是本文介紹用軟件模擬PWM。 二、Arduino 軟件模擬PWM Arduino PWM 調壓原理:PWM 有好幾種方法。而Arduino 因為電源和實現難度限制,一般 使用周期恒定,占空比變化的單極性PWM。 通過調整一個周期里面輸出腳高/低電平的時間比(即是占空比)去獲得給一個用電器不同 的平均功率。 如圖所示,假設PWM 波形周期1ms(即1kHz),分辨率1000 級。那么需要一個信號時間 精度1ms/1000=1us 的信號源,即1MHz。所以說,PWM 的實現難點在于需要使用很高頻的 信號源,才能獲得快速與高精度。下面先由一個簡單的PWM 程序開始: const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { if((bright++) == 255) bright = 0; for(int i = 0; i < 255; i++) { if(i < bright) { digitalWrite(PWMPin, HIGH); delayMicroseconds(30); } else { digitalWrite(PWMPin, LOW); delayMicroseconds(30); } } } 這是一個軟件PWM 控制Arduino D13 引腳的例子。只需要一塊Arduino 即可測試此代碼。 程序解析:由for 循環可以看出,完成一個PWM 周期,共循環255 次。 假設bright=100 時候,在第0~100 次循環中,i 等于1 到99 均小于bright,于是輸出PWMPin 高電平; 然后第100 到255 次循環里面,i 等于100~255 大于bright,于是輸出PWMPin 低電平。無 論輸出高低電平都保持30us。 那么說,如果bright=100 的話,就有100 次循環是高電平,155 次循環是低電平。 如果忽略指令執行時間的話,這次的PWM 波形占空比為100/255,如果調整bright 的值, 就能改變接在D13 的LED 的亮度。 這里設置了每次for 循環之后,將bright 加一,并且當bright 加到255 時歸0。所以,我們 看到的最終效果就是LED 慢慢變亮,到頂之后然后突然暗回去重新變亮。 這是最基本的PWM 方法,也應該是大家想的比較多的想法。 然后介紹一個簡單一點的。思維風格完全不同。不過對于驅動一個LED 來說,效果與上面 的程序一樣。 const int PWMPin = 13; int bright = 0; void setup() { pinMode(PWMPin, OUTPUT); } void loop() { digitalWrite(PWMPin, HIGH); delayMicroseconds(bright*30); digitalWrite(PWMPin, LOW); delayMicroseconds((255 - bright)*30); if((bright++) == 255) bright = 0; } 可以看出,這段代碼少了一個For 循環。它先輸出一個高電平,然后維持(bright*30)us。然 后輸出一個低電平,維持時間((255-bright)*30)us。這樣兩次高低就能完成一個PWM 周期。 分辨率也是255。 三、多引腳PWM Arduino 本身已有PWM 引腳并且運行起來不占CPU 時間,所以軟件模擬一個引腳的PWM 完全沒有實用意義。我們軟件模擬的價值在于:他能將任意的數字IO 口變成PWM 引腳。 當一片Arduino 要同時控制多個PWM,并且沒有其他重任務的時候,就要用軟件PWM 了。 多引腳PWM 有一種下面的方式: int brights[14] = {0}; //定義14個引腳的初始亮度,可以隨意設置 int StartPWMPin = 0, EndPWMPin = 13; //設置D0~D13為PWM 引腳 int PWMResolution = 255; //設置PWM 占空比分辨率 void setup() { //定義所有IO 端輸出 for(int i = StartPWMPin; i <= EndPWMPin; i++) { pinMode(i, OUTPUT); //隨便定義個初始亮度,便于觀察 brights[ i ] = random(0, 255); } } void loop() { //這for 循環是為14盞燈做漸亮的。每次Arduino loop()循環, //brights 自增一次。直到brights=255時候,將brights 置零重新計數。 for(int i = StartPWMPin; i <= EndPWMPin; i++) { if((brights[i]++) == PWMResolution) brights[i] = 0; } for(int i = 0; i <= PWMResolution; i++) //i 是計數一個PWM 周期 { for(int j = StartPWMPin; j <= EndPWMPin; j++) //每個PWM 周期均遍歷所有引腳 { if(i < brights[j])\ 所以我們要更改PWM 周期的話,我們將精度(代碼里面的變量:PWMResolution)降低就行,比如一般調整LED 亮度的話,我們用64 級精度就行。這樣速度就是2x32x64=4ms。就不會閃了。
上傳時間: 2013-10-23
上傳用戶:mqien
記錄程序記錄的程序源碼,操作Access數據庫。 有導入導出數據、填加、修改、刪除記錄等主要操作。 同時有最小化到托盤區的功能。
上傳時間: 2013-12-21
上傳用戶:xymbian
用java 編寫的源碼開放的文本編輯器。有很多有用的特性,包括語法加亮顯示,括號 匹配,表達式搜索,多個文件搜索和替換,定義鍵盤宏
上傳時間: 2015-01-07
上傳用戶:偷心的海盜