Abstract: Investment in smart meters and smart grid end equipment continues to grow worldwide as countriestry to make their electric delivery systems more efficient. However, as critical as the electric deliveryinfrastructure is, it is normally not secured and thus subject to attack. This article describes the concept oflife-cycle security—the idea that embedded equipment in the smart grid must have security designed into theentire life of the product, even back to the contract manufacturer. We also talk about how life-cycle securityapplies to embedded equipment in the smart grid. Potential threats are discussed, as are potential solutionsto mitigate the risks posed by those threats.
交流瓦特/瓦特小時,乏爾/乏爾小時轉換器 特點: 精確度0.25%滿刻度 多種輸入,輸出選擇 輸入與輸出絕緣耐壓2仟伏特/1分鐘 沖擊電壓測試5仟伏特(1.2x50us) 突波電壓測試2.5仟伏特(0.25ms/1MHz) (IEC255-4) 尺寸小,穩定性高 主要規格: 精確度: 0.25% F.S. (23 ±5℃) 輸入負載: <0.2VA (Voltage) <0.2VA (Current) 最大過載能力: Current related input:3 x rated continuous 10 x rated 30 sec. ,25 x rated 3sec. 50 x rated 1sec. Voltage related input:maximum 2 x rated continuous 輸出反應速度: < 250ms(0~90%) 輸出負載能力: < 10mA for voltage mode < 10V for current mode 輸出之漣波 : < 0.1% F.S. 脈波輸出型態: Photocouple of open collector (max.30V/40mA) 歸零調整范圍: 0~±5% F.S. 最大值調整范圍: 0~±10% F.S. 溫度系數: 100ppm/℃ (0~50℃) 隔離特性: Input/Output/Power/Case 絕緣阻抗: >100Mohm with 500V DC 絕緣耐壓能力: 2KVac/1 min. (input/output/power/case) 突波測試: ANSI C37.90a/1974,DIN-IEC 255-4 impulse voltage 5KV(1.2x50us) 使用環境條件: -20~60℃(20 to 90% RH non-condensed) 存放環境條件: -30~70℃(20 to 90% RH non-condensed) CE認證: EN 55022:1998/A1:2000 Class A EN 61000-3-2:2000 EN 61000-3-3:1995/A1:2001 EN 55024:1998/A1:2001
Abstract: Field-programmable gate arrays (FPGAs) are used in a wide variety of applications and end markets, including digital signalprocessing, medical imaging, and high-performance computing. This application note outlines the issues related to powering FPGAs.It also discusses Maxim's solutions for powering Altera® FPGAs.
高的工作電壓高達100V N雙N溝道MOSFET同步驅動 The D810DCDC is a synchronous step-down switching regulator controller that can directly step-down voltages from up to 100V, making it ideal for telecom and automotive applications. The D810DCDC uses a constant on-time valley current control architecture to deliver very low duty cycles with accurate cycle-by-cycle current limit, without requiring a sense resistor. A precise internal reference provides 0.5% DC accuracy. A high bandwidth (25MHz) error amplifi er provides very fast line and load transient response. Large 1Ω gate drivers allow the D810DCDC to drive multiple MOSFETs for higher current applications. The operating frequency is selected by an external resistor and is compensated for variations in VIN and can also be synchronized to an external clock for switching-noise sensitive applications. Integrated bias control generates gate drive power from the input supply during start-up and when an output shortcircuit occurs, with the addition of a small external SOT23 MOSFET. When in regulation, power is derived from the output for higher effi ciency.
The MAX14885E, a 2:2 VGA switch, connects a VGA source to a VGA monitor. To ease direct connection to graphics controllers orthe ASIC, the MAX14885E has two supplies: VCC, a 5V ±5% supply, drives the VGA side interface; and the VL supply sets the logicswitching thresholds on the digital input pins (EN, S00, S01, S10, S11, SHA, SHB, SVA, and SVB). This application note documentsthe proper sequencing of the VCC and VL power supplies on power-up.
Automotive power systems are unforgiving electronicenvironments. Transients to 90V can occur when thenominal voltage range is 10V to 15V (ISO7637), along withbattery reversal in some cases. It’s fairly straightforwardto build automotive electronics around this system, butincreasingly end users want to operate portable electronics,such as GPS systems or music/video players,and to charge their Li-Ion batteries from the automotivebattery. To do so requires a compact, robust, effi cientand easy-to-design charging system
Each year Vishay releases thousands of new components that enable our customers to create new and superior end products. We recognize that offering unique component solutions helps improve the performance of next-generation devices, overcome technical barriers, and create new markets.
The design of battery-powered equipment can often bequite challenging. Since few ICs can operate directly fromthe end-of-life voltage from a 2-cell battery (about 1.8V),most systems require a DC/DCconverter. The systemdesigner often has a limited area in which to place the DC/DC converter; associated inductors and capacitors must be
Portable, battery-powered operation of electronic apparatushas become increasingly desirable. Medical, remotedata acquisition, power monitoring and other applicationsare good candidates for batteryoperation. In some circumstances,due to space, power or reliability considerations,it is preferable to operate the circuitry from a single 1.5Vcell. Unfortunately, a 1.5V supply eliminates almost alllinear ICs as design candidates. In fact, the LM10 opamp-reference and the LT®1017/LT1018 comparators arethe only IC gain blocks fully specifi ed for 1.5V operation.Further complications are presented by the 600mV dropof silicon transistors and diodes. This limitation consumesa substantial portion of available supply range, makingcircuit design diffi cult. Additionally, any circuit designedfor 1.5V operation mustfunction at end-of-life batteryvoltage, typically 1.3V. (See Box Section, “Componentsfor 1.5V Operation.”)