中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
解壓密碼:www.elecfans.com 隨著微電子技術(shù)的迅速發(fā)展以及集成電路規(guī)模不斷提高,對電路性能的設(shè)計(jì)
要求越來越嚴(yán)格,這勢必對用于大規(guī)模集成電路設(shè)計(jì)的EDA 工具提出越來越高的
要求。自1972 年美國加利福尼亞大學(xué)柏克萊分校電機(jī)工程和計(jì)算機(jī)科學(xué)系開發(fā)
的用于集成電路性能分析的電路模擬程序SPICE(Simulation Program with IC
Emphasis)誕生以來,為適應(yīng)現(xiàn)代微電子工業(yè)的發(fā)展,各種用于集成電路設(shè)計(jì)的
電路模擬分析工具不斷涌現(xiàn)。HSPICE 是Meta-Software 公司為集成電路設(shè)計(jì)中
的穩(wěn)態(tài)分析,瞬態(tài)分析和頻域分析等電路性能的模擬分析而開發(fā)的一個商業(yè)化通
用電路模擬程序,它在柏克萊的SPICE(1972 年推出),MicroSim公司的PSPICE
(1984 年推出)以及其它電路分析軟件的基礎(chǔ)上,又加入了一些新的功能,經(jīng)
過不斷的改進(jìn),目前已被許多公司、大學(xué)和研究開發(fā)機(jī)構(gòu)廣泛應(yīng)用。HSPICE 可
與許多主要的EDA 設(shè)計(jì)工具,諸如Candence,Workview 等兼容,能提供許多重要
的針對集成電路性能的電路仿真和設(shè)計(jì)結(jié)果。采用HSPICE 軟件可以在直流到高
于100MHz 的微波頻率范圍內(nèi)對電路作精確的仿真、分析和優(yōu)化。在實(shí)際應(yīng)用中,
HSPICE能提供關(guān)鍵性的電路模擬和設(shè)計(jì)方案,并且應(yīng)用HSPICE進(jìn)行電路模擬時,
其電路規(guī)模僅取決于用戶計(jì)算機(jī)的實(shí)際存儲器容量。
The HSPICE Integrator Program enables qualified EDA vendors to integrate their products with the de facto standard HSPICE simulator, HSPICE RF simulator, and WaveView Analyzer™. In addition, qualified HSPICE Integrator Program members have access to HSPICE integrator application programming interfaces (APIs). Collaboration between HSPICE Integrator Program members will enable customers to achieve more thorough design verification in a shorter period of time from the improvements offered by inter-company EDA design solutions.
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.