The AVRcam source files were built using the WinAVR distribution (version 3.3.1 of GCC). I haven t tested other versions of GCC, but they should compile without too much difficulty. * The source files for the AVRcam had the author name and copyright information added back into them after the judging of the project, since it states in the competition rules that the author s name can not be present during their inspection. * The included source files are the ones that were submitted for the entry into the Circuit Cellar contest. I have continued to develop the AVRcam, and have added several new features (such as ignoring objects that aren t larger than a minimum size, removing tracked objects that overlap with each, and some general optimizations). If you are interested in the latest source, email me at john@jrobot.net * For more info about the AVRcam, check out http://www.jrobot.net John Orlando August 20, 2004
標簽: distribution version AVRcam source
上傳時間: 2016-12-30
上傳用戶:GavinNeko
Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等于m并且與m互質的正整數的個數。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數的個數 設n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數為n/p1, n/p2… 包含p1*p2, p2*p3…的個數為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
上傳時間: 2014-01-10
上傳用戶:wkchong
//Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對于約數:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數條件 對于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對于本題: 1. 篩素數的時候首先會判斷i是否是素數。 根據定義,當 x 是素數時 phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會看prime[j]是否是i的約數 如果是,那么根據上述推導,我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數的積性) 經過以上改良,在篩完素數后,我們就計算出了phi[]的所有值。 我們求出phi[]的前綴和 */
上傳時間: 2016-12-31
上傳用戶:gyq
(一) 求a~b 之間各個數的約數個數之和。(其中包括a和b在內) ans = sigma(f(i)) , (a <= i <= b) , 其中f(i)表示i的約數的個數
上傳時間: 2016-12-31
上傳用戶:daoxiang126
譯原理大作業。C語言編譯器的實現。附大作業的doc文檔說明部分。 [編譯原理豪華版程序.rar] - 編譯原理豪華版程序用VC++編寫 [附錄I Little C解釋程序源代碼.rar] - Little C解釋程序
上傳時間: 2013-12-26
上傳用戶:上善若水
基于ARM7嵌入式系統中GU I的設計研究,對如何在arm中實現gui移植,有指導作用。
上傳時間: 2014-01-10
上傳用戶:plsee
本文介紹一種用單片機普通I/O 口實現串行通信的方法
上傳時間: 2014-01-22
上傳用戶:天誠24
CODE OF NSGA,I hope that it will help you,thank you~
上傳時間: 2017-01-02
上傳用戶:wpt
I want to provide an example file system driver for Windows NT/2000/XP. For some time I have worked on an implementation of RomFs. RomFs is a small filesystem originally implemented in Linux, because of its simple disk layout its a good choice for an example driver. The current status is a working read-only driver that supports caching of file data, the create functionallity still needs some work but I m releasing it due to the high public demand.
標簽: provide Windows example driver
上傳時間: 2013-12-19
上傳用戶:zsjzc
if you want to it you can download and i m a student,this is a paper,I m wish it can help you.
上傳時間: 2014-01-16
上傳用戶:氣溫達上千萬的