變頻器是指利用電力電子器件將工頰的交流電源變換為用戶所需頻率的交流電源,它分為直接變頻(交一交變頻)和間接變頻(交一直-交變頻),間接變頻技術(shù)在穩(wěn)頻穩(wěn)壓和調(diào)頻調(diào)壓的利用率以及變頻電源對負載特性的影響等方面,都具有明顯的優(yōu)勢,是目前變頻技術(shù)領(lǐng)域普遍采取的方式,本課題所研究的正是間接變頻中的脈寬調(diào)制(PWM)變頻器技術(shù)由于IGBT器件的開關(guān)速度很快,當(dāng)IGBT關(guān)斷或績流二極管反向恢復(fù)時會產(chǎn)生很大的di/dr,該dild在主電路的布線電感上引發(fā)較大的尖峰電壓(關(guān)斷浪涌電壓).在采用PWM開關(guān)控創(chuàng)模式的IGBT變頻器中,IGBT的開關(guān)狀態(tài)不但與PWM脈沖有關(guān),還與變頻器主電路元器件及負載特性有很大關(guān)系,為了確保IGBT安全可靠的工作,有必要進一步分析主電路和緩沖電路各器件的工作情況和接相過程,以期設(shè)計出有效的IGBT保護電路。本文推導(dǎo)了兩電平PWM三相變頻器的數(shù)學(xué)模型,對變頻器主電路的換相過程及緩沖電路的工作方式利用PSIM軟件進行了細致的仿真分析,同時也仿真研究了布線電感及緩沖電路各參數(shù)對1GBT關(guān)斷電壓的影響;詳細介紹了變頻器所包含的各電路環(huán)節(jié)的理論基礎(chǔ)及設(shè)計過程:并在大量的文獻資料和相關(guān)仿真分析的基礎(chǔ)上推導(dǎo)出套級沖電路器件參數(shù)的計算公式,實踐表明計算結(jié)果符合要求并取得了良好的效果。經(jīng)過大量的實驗和反復(fù)的改進,并給出了調(diào)試結(jié)果及變頻器的額定輸出電壓、電流波形。通過將試驗結(jié)果與理論外析進行比較驗證,證明了理論分析的合理性,本文所研究設(shè)計的變頻器性能穩(wěn)定,運行可靠,完全滿足設(shè)計要求.
上傳時間: 2022-06-21
上傳用戶:bluedrops
近年來,對器件的失效分析已經(jīng)成為電力電子領(lǐng)域中一個研究熱點。本論文基于現(xiàn)代電力電子裝置中應(yīng)用最廣的IGBT器件,利用靜態(tài)測試儀3716,SEM(Scanning Electrom Microscope,掃描電子顯微鏡)、EDX(Energy Dispersive X-Ray Spectroscopy、能量色散x射線光譜儀)、FIB(Focused lon beam,聚焦高子束)切割、TEM(Thermal Emmision Microscope,高精度熱成像分析儀)等多種分析手段對模塊應(yīng)用當(dāng)中失效的1GBT芯片進行電特性分析、芯片解剖并完成失效分析,并基于相應(yīng)的失效模式提出了封裝改進方案。1,對于柵極失效的情況,本論文先經(jīng)過電特性測試完成預(yù)分析,并利用THEMOS分析出柵極漏電流通路,找到最小點并進行失效原因分析,針對相應(yīng)原因提出改進方案。2,針對開通與關(guān)斷瞬態(tài)過電流失效,采用研磨、劃片等手段進行芯片的解剖。并用SEM與EDX對芯片損傷程度進行評估分析,以文獻為參考進行失效原因分析,利用saber仿真進行失效原因驗證。3,針對通態(tài)過電流失效模式,采用解剖分析來評估損傷情況,探究失效原因,并采用電感鉗位電路進行實驗驗證。4,針對過電壓失效模式,采用芯片解剖方式來分析失效點以及失效情況,基于文獻歸納并總結(jié)出傳統(tǒng)失效原因,并通過大量實驗得出基于封裝的失效原因,最后采用saber仿真加以驗證。
標(biāo)簽: igbt
上傳時間: 2022-06-21
上傳用戶:1208020161
摘要:本文在分析1GBT的動態(tài)開關(guān)特性和過流狀態(tài)下的電氣特性的基礎(chǔ)上,通過對常規(guī)的IGBT推挽驅(qū)動電路進行改進,得到了具有良好過流保護特性的IGBT驅(qū)動電路。該電路簡單,可靠,易用,配合DSP等控制芯片能達到很好的驅(qū)動效果Abstract:Based on the studies on the dynamic switching and over-current characteristics of IGBT,this paper makes some improvments to the original push-pull driving circuit,obtains a new IGBT driving circuit which has a good over-current protection function.The circuit is simple,reliable and easy to use.Combined with controlling chips such as DSP it will do a great job in driving applications.關(guān)鍵詞:IBGT:開關(guān)特性;驅(qū)動;過流保護;Key Words:IGBT;switching characteristics;driving:over-current protection
上傳時間: 2022-06-21
上傳用戶:
1,Vs:集射極阻斷電壓在可使用的結(jié)溫范圍內(nèi),柵極和發(fā)射極短路狀況下,集射極最高電壓。手冊里一般為25℃下的數(shù)據(jù),隨著結(jié)溫的降低,VcEs會逐漸降低。由于模塊內(nèi)外部的雜散電感,IGBT在關(guān)斷時Vcs最容易超過限值2,Poat:最大允許功耗在25℃時,IGBT開關(guān)的最大允許功率損耗,即通過結(jié)到殼的熱帆所允許的最大耗散功Pat =(Ty-T)/Rtaie其中,Ty為結(jié)溫, 為環(huán)境溫度。二極管的最大功耗可以用同樣的公式獲得。在這里,順便解釋下這幾個熱阻,Rtice 結(jié)到殼的熱阻抗,乘以發(fā)熱量獲得結(jié)與克的溫差;Rthig芯片熱源到周圍空氣的總熱阻抗,乘以發(fā)熱量獲得器件溫升;Rehb芯片結(jié)與PCB間的熱阻抗,乘以單板散熱量獲得與單板的溫差。
標(biāo)簽: igbt
上傳時間: 2022-06-21
上傳用戶:
0引言任何器件在工作時都有一定的損耗,大部分的損耗均變成熱量。在實際應(yīng)用過程中,大功率器件IGBT在工作時會產(chǎn)生很大的損耗,這些損耗通常表現(xiàn)為熱量。為了使ICBT能正常工作,必須保證IGBT的耗散功率不大于最大允許耗散功率P額定1660 w,室溫25℃時),必須保證1GBT的結(jié)溫T,不超過其最大值Timar 50 ℃),因此必須采用適當(dāng)?shù)纳嵫b置,將熱量傳導(dǎo)到外部環(huán)境。如果散熱裝置設(shè)計或選用不當(dāng),這些大功率器件因過熱而損壞。為了在確定的散熱條件下設(shè)計或選用合適的散熱器,確保器件安全、可靠地工作,我們需進行散熱計算。散熱計算是通過計算器件工作時產(chǎn)生的損耗功率Pa、器件允許的結(jié)溫T、環(huán)境溫度T,求出器件允許的總熱阻R,f-a);:再根據(jù)Raf-a)求出最大允許的散熱器到環(huán)境溫度的熱阻Rinf-):最后根據(jù)Rbf-a)選取具有合適熱阻的散熱器。1 IGBT損耗分析及計算對于H型雙極模式PWM系統(tǒng)中使用的1GBT模塊,主要由IGBT元件和續(xù)流二極管FWD組成,它們各自發(fā)生的損耗之和就是IGBT本身的損耗。除此,加上1GBT的基極驅(qū)動功耗,即構(gòu)成IGRT模塊整體發(fā)生的損耗。另外,發(fā)生損耗的情況可分為穩(wěn)態(tài)時和交換時。對上述內(nèi)容進行整理可表述如下:
上傳時間: 2022-06-21
上傳用戶:
一、IGBT 驅(qū)動1 驅(qū)動電壓的選擇IGBT 模塊GE 間驅(qū)動電壓可由不同地驅(qū)動電路產(chǎn)生。典型的驅(qū)動電路如圖1 所示。圖1 IGBT 驅(qū)動電路示意圖Q1,Q2 為驅(qū)動功率推挽放大,通過光耦隔離后的信號需通過Q1,Q2 推挽放大。選擇Q1,Q2 其耐壓需大于50V 。選擇驅(qū)動電路時,需考慮幾個因素。由于IGBT 輸入電容較MOSFET 大,因此IGBT 關(guān)斷時,最好加一個負偏電壓,且負偏電壓比MOSFET 大, IGBT 負偏電壓最好在-5V~-10V 之內(nèi);開通時,驅(qū)動電壓最佳值為15V 10% ,15V 的驅(qū)動電壓足夠使IGBT 處于充分飽和,這時通態(tài)壓降也比較低,同時又能有效地限制短路電流值和因此產(chǎn)生的應(yīng)力。若驅(qū)動電壓低于12V ,則IGBT 通態(tài)損耗較大, IGBT 處于欠壓驅(qū)動狀態(tài);若 VGE >20V ,則難以實現(xiàn)電流的過流、短路保護,影響 IGBT 可靠工作。2 柵極驅(qū)動功率的計算由于IGBT 是電壓驅(qū)動型器件,需要的驅(qū)動功率值比較小,一般情況下可以不考慮驅(qū)動功率問題。但對于大功率IGBT ,或要求并聯(lián)運行的IGBT 則需要考慮驅(qū)動功率。IGBT 柵極驅(qū)動功率受到驅(qū)動電壓即開通VGE( ON )和關(guān)斷 VGE( off ) 電壓,柵極總電荷 QG 和開關(guān) f 的影響。柵極驅(qū)動電源的平均功率 PAV 計算公式為:PAV =(VGE(ON ) +VGE( off ) )* QG *f對一般情況 VGE( ON ) =15V,VGE( off ) =10V,則 PAV 簡化為: PAV =25* QG *f。f 為 IGBT 開關(guān)頻率。柵極峰值電流 I GP 為:
上傳時間: 2022-06-21
上傳用戶:
自20世紀(jì)80年代以來,以IGBT為代表的雙極型復(fù)合器件的迅速發(fā)展,使得電力電子器件沿著高電壓、大電流、高頻化、模塊化的方向發(fā)展,逆變技術(shù)日趨大容量化、高性能化,這使得采用大功率逆變電源作為艦船的主要供電電源成為可能。以igBT為主開關(guān)件的船大功逆變電源設(shè)計中,由于 KBт開關(guān)頻率、開關(guān)速度的提高以及容量的提升(目前3 300 V-1 500 A的 KBT模塊已投入實際應(yīng)用),流經(jīng)KBT的電流迅速變化,主電路母線的分布電感產(chǎn)生的瞬時電壓尖峰會施加在KBT兩端,如果處理不當(dāng),會使KBT的開關(guān)工作軌跡超出器件的SOA(Safe Operation Area安全工作區(qū)域),從而對逆變電源的正常運行構(gòu)成威脅"1.本文對大功率逆變電源KBT關(guān)斷時產(chǎn)生電壓尖峰的機理進行了說明,并對影響關(guān)斷電壓尖峰的主要因素進行了分析。通過應(yīng)用疊層復(fù)合母排降低了主電路母線的分布電感,通過設(shè)計合適的吸收電路改善了開關(guān)軌跡,從而抑制關(guān)斷電壓尖峰,使大功率逆變電源的開關(guān)器件運行在可靠的工作范圍內(nèi)。
上傳時間: 2022-06-21
上傳用戶:d1997wayne
本文以感應(yīng)加熱電源為研究對象,闡述了感應(yīng)加熱電源的基本原理及其發(fā)展趨勢。對感應(yīng)加熱電源常用的兩種拓撲結(jié)構(gòu)-電流型逆變器和電壓型逆變器做了比較分析,并分析了感應(yīng)加熱電源的各種調(diào)功方式。在對比幾種功率調(diào)節(jié)方式的基礎(chǔ)上,得出在整流側(cè)調(diào)功有利于高頻感應(yīng)加熱電源頻率和功率的提高的結(jié)論,選擇了不控整流加軟斬波器調(diào)功的感應(yīng)加熱電源作為研究對象,針對傳統(tǒng)硬斬波調(diào)功式感應(yīng)加熱電源功率損耗大的缺點,采用軟斬波調(diào)功方式,設(shè)計了一種零電流開關(guān)準(zhǔn)諾振變換器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍頻式串聯(lián) 振高頻感應(yīng)加熱電源。介紹了該軟斬波調(diào)功器的組成結(jié)構(gòu)及其工作原理,通過仿真和實驗的方法研究了該軟斬波器的性能,從而得出該軟斬波器非常適合大功率高頻感應(yīng)加熱電源應(yīng)用場合的結(jié)論。同時設(shè)計了功率閉環(huán)控制系統(tǒng)和PI功率調(diào)節(jié)器,將感應(yīng)加熱電源的功率控制問題轉(zhuǎn)化為Buck斬波器的電壓控制問題。針對目前IGBT器件頻率較低的實際情況,本文提出了一種新的逆變拓撲-通過IGBT的并聯(lián)來實現(xiàn)倍頻,從而在保證感應(yīng)加熱電源大功率的前提下提高了其工作頻率,并在分析其工作原理的基礎(chǔ)上進行了仿真,驗證了理論分析的正確性,達到了預(yù)期的效果。另外,本文還設(shè)計了數(shù)字鎖相環(huán)(DPLL),使逆變器始終保持在功率因數(shù)近似為1的狀態(tài)下工作,實現(xiàn)電源的高效運行。最后,分析并設(shè)計了1GBT的緩沖吸收電路。本文第五章設(shè)計了一臺150kHz,10KW的倍頻式感應(yīng)加熱電源實驗樣機,其中斬波器頻率為20kHz,逆變器工作頻率為150kHz(每個IGBT工作頻率為75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,簡化了系統(tǒng)結(jié)構(gòu)。實驗結(jié)果表明,該倍頻式感應(yīng)加熱電源實現(xiàn)了斬波器和逆變器功率器件的軟開關(guān),有效的減小了開關(guān)損耗,并實現(xiàn)了數(shù)字化,提高了整機效率。文章給出了整機的結(jié)構(gòu)設(shè)計,直流斬波部分控制框圖,逆變控制框圖,驅(qū)動電路的設(shè)計和保護電路的設(shè)計。同時,給出了關(guān)鍵電路的仿真和實驗波形。
上傳時間: 2022-06-22
上傳用戶:
IGBT關(guān)斷電壓尖峰是其中的主要問題,解決它的最有效方法是采用疊層母線連接器件。針對二極管籍位型三電平拓撲兩個基本強追換流回路,本文用ANSOFT Q3D軟件比較研究了三類適用于多層母線排的疊層方案,并提出了一種新穎的疊層母線分組連接結(jié)構(gòu),結(jié)合特殊設(shè)計的吸收電容布局,減小了各IGBT模塊的關(guān)斷過沖,省去阻容吸收電路,并優(yōu)化了高頻電流在不同電容間的分布,抑制電解電容發(fā)熱。通過理論計算與仿真兩種方式計算該設(shè)計方案的雜散電感,并用實驗加以證實。本文還設(shè)計了大面積一體化水冷散熱器,表面可以貼裝15個功率器件和若干傳感器和平衡電阻,采用水冷方式以迅速帶走滿載運行時開關(guān)器件的損耗發(fā)熱,并能達到結(jié)構(gòu)緊湊和防爆的效果。在散熱器內(nèi)部設(shè)計了細槽水道結(jié)構(gòu)以避開100多個定位螺孔,同時可以獲得更大的熱交換面積。本文分析了SCALE驅(qū)動芯片的兩類器件級短路保護原理,并設(shè)計了針對兩類保護動作的閾值測試實驗,以確保每個器件在安全范圍內(nèi)工作;設(shè)計了系統(tǒng)控制和三類系統(tǒng)級保護電路:驅(qū)動板和控制板的布局布線經(jīng)過合理安排能在較強的電磁干擾下正常工作。論文最后,在電抗器、電阻器、異步感應(yīng)電機等不同類型、各功率等級負載下,對變流模塊進行了測試,并解決了直流中點電壓平衡問題。各實驗證實了設(shè)計理論并體現(xiàn)了良好的應(yīng)用效果。
上傳時間: 2022-06-22
上傳用戶:
全數(shù)字化焊機系統(tǒng)的主電路采用能輸出較大功率的IGBT全僑式逆變結(jié)構(gòu),控制系統(tǒng)采用DSP(TMS320LF2407A)和單片機(C8051F020)構(gòu)成的主從式控制結(jié)構(gòu),其中DSP為控制系統(tǒng)的核心,主要完成焊接實時參數(shù)的采集、PI運算和PWM波形的產(chǎn)生:單片機對整個控制系統(tǒng)進行管理,可以實現(xiàn)對人機交互系統(tǒng)(包括鍵盤和顯示)、送絲電機和一些開關(guān)量的控制以及與PC機通訊等功能。此外,單片機與DSP之間采用串行通信方式進行信息交換。本文還對送絲電機控制電路和一些輔助控制電路進行了必要的設(shè)計.在控制系統(tǒng)軟件設(shè)計中采用了模塊化的程序設(shè)計思想。在規(guī)劃出整個主程序流程的基礎(chǔ)上,把整個程序分為多個結(jié)構(gòu)簡單、功能明確的子程序來設(shè)計,從而大大降低了系統(tǒng)軟件設(shè)計的復(fù)雜性,同時也使程序結(jié)構(gòu)清晰、簡單易懂。在主電路和控制電路的設(shè)計中,采用了線性光耦、霍爾傳感器等多項隔離措施,并設(shè)計了相應(yīng)的焊機保護電路,同時還采用了必要的軟硬件抗干擾措施,從而保證了全數(shù)字化焊機系統(tǒng)工作的穩(wěn)定性和可靠性.通過對控制電路的各個功能模塊進行軟、硬件調(diào)試表明,該焊機系統(tǒng)響應(yīng)速度快,電路簡單可靠,系統(tǒng)軟件較高效、可移植性好,且系統(tǒng)抗干擾能力強,基本達到了本設(shè)計的要求。最后,在對本文做簡要總結(jié)的基礎(chǔ)上,對于本焊機的進一步完善工作提出了建議,為全數(shù)字化焊機控制系統(tǒng)今后更加深入的研究奠定了良好的基礎(chǔ)。關(guān)鍵詞:數(shù)字化焊機:控制系統(tǒng):逆變技術(shù);DSP:單片機:人機交互系統(tǒng)
上傳時間: 2022-06-22
上傳用戶:slq1234567890
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1