This document provides practical, common guidelines for incorporating PCI Express interconnect
layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10-
layer or more server baseboard designs. Guidelines and constraints in this document are intended
for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI
Express devices located on the same baseboard (chip-to-chip routing) and interconnects between
a PCI Express device located “down” on the baseboard and a device located “up” on an add-in
card attached through a connector.
This document is intended to cover all major components of the physical interconnect including
design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card
edge-finger and connector considerations. The intent of the guidelines and examples is to help
ensure that good high-speed signal design practices are used and that the timing/jitter and
loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect.
However, while general physical guidelines and suggestions are given, they may not necessarily
guarantee adequate performance of the interconnect for all layouts and implementations.
Therefore, designers should consider modeling and simulation of the interconnect in order to
ensure compliance to all applicable specifications.
The document is composed of two main sections. The first section provides an overview of
general topology and interconnect guidelines. The second section concentrates on physical layout
constraints where bulleted items at the beginning of a topic highlight important constraints, while
the narrative that follows offers additional insight.
PCI ExpressTM is the third generation of PCI (PeripheralComponent interconnect) technology used to connect I/Operhipheral devices in computer systems. It is intended asa general purpose I/O device interconnect that meets theneeds of a wide variety of computing platforms such asdesktop, mobile, server and communications. It alsospecifies the electrical and mechanical attributes of thebackplane, connectors and removable cards in thesesystems.
The latest generation of Texas Instruments (TI) boardmountedpower modules utilizes a pin interconnect technologythat improves surface-mount manufacturability.These modules are produced as a double-sided surfacemount(DSSMT) subassembly, yielding a case-less constructionwith subcomponents located on both sides of theprinted circuit board (PCB). Products produced in theDSSMT outline use the latest high-efficiency topologiesand magnetic-component packaging. This providescustomers with a high-efficiency, ready-to-use switchingpower module in a compact, space-saving package. Bothnonisolated point-of-load (POL) switching regulators andthe isolated dc/dc converter modules are being producedin the DSSMT outline.TI’s plug-in power product line offers power modules inboth through-hole and surface-mount packages. The surfacemountmodules produced in the DSSMT outline use asolid copper interconnect with an integral solder ball fortheir
The Motorola MPC106 PCI bridge/memory controller provides a PowerPCªmicroprocessor common hardware reference platform (CHRPª) compliant bridgebetween the PowerPC microprocessor family and the Peripheral Component interconnect(PCI) bus. In this document, the term Ô106Õ is used as an abbreviation for the phraseÔMPC106 PCI bridge/memory controllerÕ. This document contains pertinent physicalcharacteristics of the 106. For functional characteristics refer to theMPC106 PCI Bridge/Memory Controller UserÕs Manual.This document contains the following topics:Topic PageSection 1.1, ÒOverviewÓ 2Section 1.2, ÒFeaturesÓ 3Section 1.3, ÒGeneral ParametersÓ 5Section 1.4, ÒElectrical and Thermal CharacteristicsÓ 5Section 1.5, ÒPin AssignmentsÓ 17Section 1.6, ÒPinout Listings 18Section 1.7, ÒPackage DescriptionÓ 22Section 1.8, ÒSystem Design InformationÓ 24Section 1.9, ÒDocument Revision HistoryÓ 29Section 1.10, ÒOrdering InformationÓ 29
中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.