The exercise should be finished in English.
2. According to Prof. Zhang s requirement, this exercise mainly focuses on the BER performance of some wireless communication system using specific coding and modulation type through the AWGN channel. Signal-to-Noise ration (SNR) varies from 5dB to 20dB.
The software is capable to simulate space time code [1] for QPSK modulation using different number of state. Examples of generator matrix up to 256 stetes are provided. Variable signal to noise ratio (SNR) might be applied to produce bit error rate (BER) or frame error rate (FER) curves.
The ever-increasing demand for private and sensitive data transmission over wireless net-
works has made security a crucial concern in the current and future large-scale, dynamic,
and heterogeneous wireless communication systems. To address this challenge, computer
scientists and engineers have tried hard to continuously come up with improved crypto-
graphic algorithms. But typically we do not need to wait too long to find an efficient way
to crack these algorithms. With the rapid progress of computational devices, the current
cryptographic methods are already becoming more unreliable. In recent years, wireless re-
searchers have sought a new security paradigm termed physical layer security. Unlike the
traditional cryptographic approach which ignores the effect of the wireless medium, physi-
cal layer security exploits the important characteristics of wireless channel, such as fading,
interference, and noise, for improving the communication security against eavesdropping
attacks. This new security paradigm is expected to complement and significantly increase
the overall communication security of future wireless networks.
A wireless communication network can be viewed as a collection of nodes, located in some domain, which
can in turn be transmitters or receivers (depending on the network considered, nodes may be mobile users,
base stations in a cellular network, access points of a WiFi mesh etc.). At a given time, several nodes
transmit simultaneously, each toward its own receiver. Each transmitter–receiver pair requires its own
wireless link. The signal received from the link transmitter may be jammed by the signals received from
the other transmitters. Even in the simplest model where the signal power radiated from a point decays in
an isotropic way with Euclidean distance, the geometry of the locations of the nodes plays a key role since
it determines the signal to interference and noise ratio (SINR) at each receiver and hence the possibility of
establishing simultaneously this collection of links at a given bit rate. The interference seen by a receiver is
the sum of the signal powers received from all transmitters, except its own transmitter.
Abstract: Specifications such as noise, effective number of bits (ENOB), effective resolution, and noise-free resolution inlarge part define how accurate an ADC really is. Consequently, understanding the performance metrics related to noise isone of the most difficult aspects of transitioning from a SAR to a delta-sigma ADC. With the current demand for higherresolution, designers must develop a better understanding of ADC noise, ENOB, effective resolution, and signal-to-noiseratio (SNR). This application note helps that understanding.