Matrix operations solution of AX=B Jordan and newton Methods
標簽: operations solution Methods Matrix
上傳時間: 2013-12-01
上傳用戶:小鵬
Bing is a point-to-point bandwidth measurement tool (hence the b ), based on ping. Bing determines the real (raw, as opposed to available or average) throughput on a link by measuring ICMP echo requests roundtrip times for different packet sizes for each end of the link
標簽: Bing point-to-point measurement determines
上傳時間: 2015-09-15
上傳用戶:lgnf
* "Copyright (c) 2006 Robert B. Reese ("AUTHOR")" * All rights reserved. * (R. Reese, reese@ece.msstate.edu, Mississippi State University) * IN NO EVENT SHALL THE "AUTHOR" BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE "AUTHOR" * HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
上傳時間: 2015-09-24
上傳用戶:mpquest
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
I wrote this code early this year using ColdFire MCF5213 in codewarrior IDE. The LCD is STN B/W 320x240 dot matrix LCD. The code include 3 different fonts, and basic LCD driver. All original!
標簽: this codewarrior ColdFire wrote
上傳時間: 2013-12-20
上傳用戶:皇族傳媒
This a linux device driver for Ralink RT2500USB b/g WLAN Card. This driver implements basic 802.11 function. Infrastructure and Ad-hoc mode with open or shared or wpapsk or wpa2psk authentication method. WEP-40 and WEP-104 or tkip or aes encryption.
標簽: driver This implements Ralink
上傳時間: 2016-03-10
上傳用戶:cc1015285075
1) Write a function reverse(A) which takes a matrix A of arbitrary dimensions as input and returns a matrix B consisting of the columns of A in reverse order. Thus for example, if A = 1 2 3 then B = 3 2 1 4 5 6 6 5 4 7 8 9 9 8 7 Write a main program to call reverse(A) for the matrix A = magic(5). Print to the screen both A and reverse(A). 2) Write a program which accepts an input k from the keyboard, and which prints out the smallest fibonacci number that is at least as large as k. The program should also print out its position in the fibonacci sequence. Here is a sample of input and output: Enter k>0: 100 144 is the smallest fibonacci number greater than or equal to 100. It is the 12th fibonacci number.
標簽: dimensions arbitrary function reverse
上傳時間: 2016-04-16
上傳用戶:waitingfy
21世紀大學新型參考教材系列 集成電路B 荒井
上傳時間: 2013-04-15
上傳用戶:eeworm
家電維修(最基礎的教程B)1-20.Torrent
上傳時間: 2013-06-10
上傳用戶:eeworm
jk-b交通信號控制機原理圖
上傳時間: 2013-07-13
上傳用戶:eeworm