隨著光通信的蓬勃發展,光纖通信技術廣泛應用于電信、電力、廣播等領域,對整個信息產業產生了深遠影響,光纖已成為當前最有前景的傳輸媒介。與此同時,光纖測試技術在光纖生產、現場鋪設與后期維護等工程領域中得到廣泛應用。光時域反射儀(Optical Time Domain Reflectometer),又稱背向散射儀,是一種用于表征光纖鏈路物理特性的精密光學測試儀器,主要用于測試光纖鏈路長度,精確定位斷點事件,計算光纖損耗,并提供與長度有關的衰減細節。光纖鏈路中待測光纖的測量長度范圍和測量精度,取決于OTDR的激光出纖功率和光脈寬。因此,需要設計合適的激光脈沖驅動電源及配套的控制和探測系統,研究激光出纖功率和脈寬對測量長度和測量精度的影響,從而獲得能滿足不同光纖鏈路測量需求的OTDR系統解決方案。文章在具體描述了光時域反射儀的工作機理以及影響其主要性能的關鍵參數的基礎上,提出以設計能提供大功率、窄脈沖電流信號的激光驅動電源作為提高OTDR性能的主要手段。在掌握半導體激光驅動原理的基礎上,經過細致地比較與方案論證提出以 MOSFET作為激光脈沖驅動電源的開關器件,以能量儲存法作為窄脈沖產生機制的脈沖電源設計方案,設計實現基于FPGA的觸發脈沖信號,并通過 Multisim對系統硬件電路仿真優化,實現激光脈沖驅動大功率、窄脈寬輸出。以雪崩二極管作為光電探測系統關鍵響應轉換器件驗證驅動電源性能,并完成光纖測距。最終成功研制出一套基于納秒脈沖激光和對應光電探測系統的OTDR系統,并進行了實際測試測試和研究結果顯示:所研制的脈沖激光電源能輸出的最小脈寬為33n,最小輸出峰值電流為1A,且峰值電流及頻率大小可調。大電流窄脈寬驅動電源信號輸出可極大地增強光時域反射儀的動態范圍以及分辨率,探測器分時調控測量技術可以極大地提高系統的測量精度和信噪比。
上傳時間: 2022-03-11
上傳用戶:
MOSFET的柵極驅動過程,可以簡單的理解為驅動源對MOSFET的輸入電容(主要是柵源極電容Cgs)的充放電過程;當Cgs達到門檻電壓之后, MOSFET就會進入開通狀態;當MOSFET開通后,Vds開始下降,Id開始上升,此時MOSFET進入飽和區;但由于米勒效應,Vgs會持續一段時間不再上升,此時Id已經達到最大,而Vds還在繼續下降,直到米勒電容充滿電,Vgs又上升到驅動電壓的值,此時MOSFET進入電阻區,此時Vds徹底降下來,開通結束。由于米勒電容阻止了Vgs的上升,從而也就阻止了Vds的下降,這樣就會使損耗的時間加長。(Vgs上升,則導通電阻下降,從而Vds下降)
標簽: MOS管
上傳時間: 2022-03-20
上傳用戶:得之我幸78
關乎鋰電池供電的產品,在鋰電池上,需要三個電路系統: 1,鋰電池保 護電路, 2,鋰電池充電電路, 3,鋰電池輸出電路。
上傳時間: 2022-03-23
上傳用戶:kingwide
硬件設計中常見器件選型1. 電阻器件選型2. 電容器件選型3. 電感器件選型4. 磁珠器件選型5. 二極管器件選型6. BJT器件選型7. MOSFET器件選型8. 常用處理器選型9. 邏輯器件選型10. 時鐘器件選型11. 電源芯片選型12. AD/DA器件選型13. 復位芯片選型14. ESD防護器件
上傳時間: 2022-03-31
上傳用戶:
BP1638CJ 是一款三通道可調光 LED 線性恒流驅動芯片,內置 40V/200mA MOSFET,通過調節輸入的 3 路 PWM 信號占空比,來調整對應 LED 光源的電流,從而達到調光目的。BP1638CJ 支持 PWM 調光信號,可以搭配常見的調光模塊實現調光功能。BP1638CJ 具有過溫調節功能。當 LED 電流過大導致芯片溫度過高時,將降低輸出電流。特點三路線性 PWM 調光內置三路 40V/200mA MOSFET兼容 10kHz 以下的 PWM 信號單個 Rcs 設定三路輸出電流待機電流<100uA芯片間輸出電流偏差±4%芯片內三路之間輸出電流偏差±3%采用 ESOP8 封裝應用LED 調光調色智能燈泡其他 LED 智能照明
標簽: LED驅動
上傳時間: 2022-04-04
上傳用戶:fliang
摘要:以N溝道増強型場效應管為核心,基于H橋PWM控制原理,設計了一種直流電機正反轉調速驅動控制電路,滿足大功率直流電機驅動控制。實驗表明該驅動控制電路具有結構簡單、驅動能力強、功耗低的特點。關鍵詞:N溝道增強型場效應管;H橋;PWM控制;電荷泵;功率放大;直流電機1引言長期以來,直流電機以其良好的線性特性、優異的控制性能等特點成為大多數變速運動控制和閉環位置伺服控制系統的最佳選擇。特別隨著計算機在控制領域,高開關頻率、全控型第二代電力半導體器件(GTR、GTO、MOSFET.、IGBT等)的發展,以及脈寬調制(PWM直流調速技術的應用,直流電機得到廣泛應用。為適應小型直流電機的使用需求,各半導體廠商推出了直流電機控制專用集成電路,構成基于微處理器控制的直流電機伺服系統。但是,專用集成電路構成的直流電機驅動器的輸出功率有限,不適合大功率直流電機驅動需求。因此采用N溝道増強型場效應管構建H橋,實現大功率直流電機驅動控制。該驅動電路能夠滿足各種類型直流電機需求,并具有快速、精確、高效、低功耗等特點,可直接與微處理器接口,可應用PWM技術實現直流電機調速控制。2直流電機驅動控制電路總體結構直流電機驅動控制電路分為光電隔離電路、電機驅動邏輯電路、驅動信號放大電路、電荷泵路、H橋功率驅動電路等四部分,其電路框圖如圖1所示。由圖可以看出,電機驅動控制電路的外圍接口簡單。其主要控制信號有電機運轉方向信號Dir電機調速信號PWM及電機制動信號 Brake,vcc為驅動邏輯電路部分提供電源,Vm為電機電源電壓,M+、M-為直流電機接口。
上傳時間: 2022-04-10
上傳用戶:jiabin
LED音樂頻譜制作教程 原理圖文件 參考設計源碼利用 51 單片機制作 LED 頻譜顯示的原理: 1、選擇一款具有高速 ADC 采樣的單片機,采集音頻信號的電壓幅度,比如 WQX 推薦是 STC12C5A60S2.該單片機具有 8 通道 10 位 ADC 采樣封裝模塊。每秒鐘可以采樣 25 萬次。滿足 我們的設計需要。傳統的單片機開發板自帶的 ADC0804 采樣速度不能滿足。不推薦。 2、采樣結果,通過 FFT 運算,得出各種頻段的幅度值。分別保存在 15 個字節的數組變量 中。我們人耳能夠聽到的極限頻率是 20Hz--20KHz 。但是 我們平時的音樂歌曲的頻段大概是 100Hz---4KHz(極少部分樂器的頻率能達到 6K 以上)。所以,我們的顯示頻率范圍定為 100Hz---4KHz 。 3、利用 IO 口驅動 8*15=120 顆 LED 組成的矩陣燈點。顯示 15 個頻段的幅度值。并且,多 添加一行作為平面,讓效果更美觀
標簽: stc12c5a60s2 led 音樂頻譜
上傳時間: 2022-04-11
上傳用戶:默默
TM52 系列 F8368 是一個新的,快速的 8051 架構,與業界標準 8051 指令集完全兼容的 8 位單片機,并保持了 8051 外圍的功能模塊。通常情況下,TM52 執行指令,比傳統的 8051 架構快六倍。TM52-F8368通過集成多種功能在芯片上,提供更高的性能,更低的成本,能快速進入市場,包括8K 字節的閃存(Flash)程序存儲器, 512 字節 SRAM,低電壓復位(LVR),低電壓檢測(LVD),雙時鐘省電工作模式,8051 標準 UART 和定時器 Timer0/Timer1/Timer2,實時計時器 Timer3,LCD/LED 驅動器,3 組16 位脈沖寬度調制器(PWM), 7 組 16 位脈沖寬度調制器(PWM),16 通道的 12 位模數轉換器(ADC),I2C 接口和看門狗定時器(WDT)。它的高可靠性和低功耗的特性,可廣泛適用于消費電子及家用電器產品。
標簽: 51單片機
上傳時間: 2022-04-18
上傳用戶:jason_vip1
FPGA那些事兒--Modelsim仿真技巧REV6.0,經典Modelsim學習開發設計經驗書籍-331頁。前言筆者一直以來都在糾結,自己是否要為仿真編輯相關的教程呢?一般而言,Modelsim 等價仿真已經成為大眾的常識,但是學習仿真是否學習Modelsim,筆者則是一直保持保留的態度。筆者認為,仿真是Modelsim,但是Modelsim 不是仿真,嚴格來講Modelsim只是仿真所需的工具而已,又或者說Modelsim 只是學習仿真的一部小插曲而已。除此之外,筆者也認為仿真可以是驗證語言,但是驗證語言卻不是仿真,因為驗證語言只是仿真的一小部分而已,事實上仿真也不一定需要驗證語言。常規告訴筆者,仿真一定要學習Modelsim 還有驗證語言,亦即Modelsim 除了學習操作軟件以外,我們還要熟悉TCL 命令(Tool Command Language)。此外,學習驗證語言除了掌握部分關鍵字以外,還要記憶熟悉大量的系統函數,還有預處理。年輕的筆者,因為年少無知就這樣上當了,最后筆者因為承受不了那巨大的學習負擔,結果自爆了。經過慘痛的經歷以后,筆者重新思考“仿真是什么?”,仿真難道是常規口中說過的東西嗎?還是其它呢?苦思冥想后,筆者終于悟道“仿真既是虛擬建?!边@一概念。虛擬建模還有實際建模除了概念(環境)的差別以外,兩者其實是同樣的東西。換句話說,一套用在實際建模的習慣,也能應用在仿真的身上。按照這條線索繼續思考,筆者發現仿真其實是復合體,其中包括建模,時序等各種基礎知識。換言之,仿真不僅需要一定程度的基礎,仿真不能按照常規去理解,不然腦袋會短路。期間,筆者發現愈多細節,那壓抑不了的求知欲也就愈燒愈旺盛,就這樣日夜顛倒研究一段時間以后,筆者終于遇見仿真的關鍵,亦即個體仿真與整體仿真之間的差異。常規的參考書一般都是討論個體仿真而已,然而它們不曾涉及整體仿真。一個過多模塊其中的仿真對象好比一塊大切糕,壓倒性的仿真信息會讓我們喘不過起來,為此筆者開始找尋解決方法。后來筆者又發現到,早期建模會嚴重影響仿真的表現,如果筆者不規則分化整體模塊,仿真很容易會變得一團糟,而且模塊也會失去連接性。筆者愈是深入研究仿真,愈是發現以往不曾遇見的細節問題,然而這些細節問題也未曾出現在任何一本參考書的身上。漸漸地,筆者開始認識,那些所謂的權威還有常規,從根本上只是外表好看的紙老虎而已,細節的涉及程度完全不行。筆者非常后悔,為什么自己會浪費那么多時間在它們的身上??蓯旱某R?!快把筆者的青春還回來! 所以說,常規什么的最討厭了,最好統統都給我爆炸去吧!嗚咕,過多怨氣實在一言難盡,欲知詳情,讀者自己看書去吧...
上傳時間: 2022-05-02
上傳用戶:
BP6309 是一款高性能低成本的三相無刷直流電機正弦波控制芯片,芯片集成了霍爾位置解碼器、MOSFET 驅動、振蕩器等模塊,僅需很少的外圍元件即可構成完整的無刷直流電機驅動系統。
標簽: 直流電機
上傳時間: 2022-05-09
上傳用戶: