We often get questions about how the deflate() and inflate() functions should be used. Users wonder when they should provide more input, when they should use more output, what to do with a Z_BUF_ERROR, how to make sure the process terminates properly, and so on. So for those who have read zlib.h (a few times), and would like further edification, below is an annotated example in C of simple routines to compress and decompress from an input file to an output file using deflate() and inflate() respectively. The annotations are interspersed between lines of the code. So please read between the lines. We hope this helps explain some of the intricacies of zlib.
Zlib函數列表 We often get questions about how the deflate() and inflate() functions should be used. Users wonder when they should provide more input, when they should use more output, what to do with a Z_BUF_ERROR, how to make sure the process terminates properly, and so on. So for those who have read zlib.h (a few times), and would like further edification, below is an annotated example in C of simple routines to compress and decompress from an input file to an output file using deflate() and inflate() respectively. The annotations are interspersed between lines of the code. So please read between the lines. We hope this helps explain some of the intricacies of zlib.
The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa.
For example,
>> project.name = MyProject
>> project.id = 1234
>> project.param.a = 3.1415
>> project.param.b = 42
becomes with str=xml_format(project, off )
"<project>
<name>MyProject</name>
<id>1234</id>
<param>
<a>3.1415</a>
<b>42</b>
</param>
</project>"
On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).
漢諾塔!!!
Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation
eg. if n = 2 A→B A→C B→C
if n = 3 A→C A→B C→B A→C B→A B→C A→C