This book is about multipoint cooperative communication, a key technology to
overcome the long-standing problem of limited transmission rate caused by inter-
point interference. However, the multipoint cooperative communication is not an
isolated technology. Instead, it covers a vast range of research areas such as the
multiple-input multiple-outputsystem, the relay network, channel state information
issues, inter-point radio resource management operations, coordinated or joint
transmissions, etc. We suppose that any attempt trying to thoroughly analyze the
multipoint cooperative communication technology might end up working on a
cyclopedia for modern communication systems and easily get lost in discussing all
kinds of cooperative communication schemes as well as the associated models and
their variations.
The purpose of this book is to introduce the concept of the Multiple Input Multiple Output
(MIMO) radio channel, which is an intelligent communication method based upon using
multiple antennas. The book opens by explaining MIMO in layman’s terms to help stu-
dents and people in industry working in related areas become easily familiarised with the
concept. Therefore the structure of the book will be carefully arranged to allow a user to
progress steadily through the chapters and understand the fundamental and mathematical
principles behind MIMO through the visual and explanatory way in which they will be
written. It is the intention that several references will also be provided, leading to further
reading in this highly researched technology.
The continuing vitality of spread-spectrum communication systems and the devel-
opment of new mathematical methods for their analysis provided the motivation to
undertake this new edition of the book. This edition is intended to enable readers
to understand the current state-of-the-art in this field. Almost twenty percent of the
materialinthiseditionisnew, includingseveralnewsections, anewchapteronadap-
tive arrays and filters, and a new chapter on code-division multiple-access networks.
The multiple-input multiple-output (MIMO) technique provides higher bit rates
and better reliability in wireless systems. The efficient design of RF transceivers
has a vital impact on the implementation of this technique. This first book is com-
pletely devoted to RF transceiver design for MIMO communications. The book
covers the most recent research in practical design and applications and can be
an important resource for graduate students, wireless designers, and practical
engineers.
The single-carrier frequency division multiple access (SC-FDMA)
system is a well-known system that has recently become a preferred
choice for mobile uplink channels. This is attributed to its advantages
such as the low peak-to-average power ratio (PAPR) and the use of
frequency domain equalizers. Low PAPR allows the system to relax
the specifications of linearity in the power amplifier of the mobile
terminal, which reduces cost and power consumption.
Driven by the desire to boost the quality of service of wireless systems closer to that afforded
by wireline systems, space-time processing for multiple-input multiple-output (MIMO)
wireless communications research has drawn remarkable interest in recent years. Excit-
ing theoretical advances, complemented by rapid transition of research results to industry
products and services, have created a vibrant and growing area that is already established
by all counts. This offers a good opportunity to reflect on key developments in the area
during the past decade and also outline emerging trends.
The continuing vitality of spread-spectrum communication systems and the devel-
opment of new mathematical methods for their analysis provided the motivation to
undertake this new edition of the book. This edition is intended to enable readers
to understand the current state-of-the-art in this field. Almost twenty percent of the
materialinthiseditionisnew, includingseveralnewsections, anewchapteronadap-
tive arrays and filters, and a new chapter on code-division multiple-access networks.
The remainder of the material has been thoroughly revised, and I have removed a
considerable amount of material that has been superseded by more definitive results.
A mobile ad-hoc network (MANET) is formed by multiple moving nodes
equipped with wireless transceivers. The mobile nodes communicate with
each other through multi-hop wireless links, where every node can transmit
and receive information. Mobile ad-hoc networks have become increasingly
important in areas where deployment of communications infrastructure is
difficult.
An acronym for Multiple-In, Multiple-Out, MIMO communication sends the same data as several signals
simultaneously through multiple antennas, while still utilizing a single radio channel. This is a form of
antenna diversity, which uses multiple antennas to improve signal quality and strength of an RF link. The
data is split into multiple data streams at the transmission point and recombined on the receive side by
another MIMO radio configured with the same number of antennas. The receiver is designed to take
into account the slight time difference between receptions of each signal, any additional noise or
interference, and even lost signals.
Once upon a time, cellular wireless networks provided two basic services: voice
telephony and low-rate text messaging. Users in the network were separated
by orthogonal multiple access schemes, and cells by generous frequency reuse
patterns [1]. Since then, the proliferation of wireless services, fierce competition,
andthe emergenceof new service classes such as wireless data and multimediahave
resulted in an ever increasing pressure on network operators to use resources in a
moreefficient manner.In the contextof wireless networks,two of the most common
resources are power and spectrum—and, due to regulations, these resources are
typically scarce. Hence, in contrast to wired networks, overprovisioning is not
feasible in wireless networks.