股票搜索程序,可自動搜索符合一定條件的股票。這里的條件主要包括前N天的成交量、價格等參數形成的K線特征。
上傳時間: 2013-12-29
上傳用戶:zjf3110
實現最優二叉樹的構造;在此基礎上完成哈夫曼編碼器與譯碼器。 假設報文中只會出現如下表所示的字符: 字符 A B C D E F G H I J K L M N 頻度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 57 字符 O P Q R S T U V W X Y Z , . 頻度 63 15 1 48 51 80 23 8 18 1 16 1 6 2 要求完成的系統應具備如下的功能: 1.初始化。從終端(文件)讀入字符集的數據信息,。建立哈夫曼樹。 2.編碼:利用已建好的哈夫曼樹對明文文件進行編碼,并存入目標文件(哈夫曼碼文件)。 3.譯碼:利用已建好的哈夫曼樹對目標文件(哈夫曼碼文件)進行編碼,并存入指定的明文文件。 4.輸出哈夫曼編碼文件:輸出每一個字符的哈夫曼編碼。
上傳時間: 2014-11-23
上傳用戶:shanml
Ex3-23 親兄弟問題 « 問題描述: 給定n 個整數0 1 1 , , , n- a a a 組成的序列。序列中元素i a 的親兄弟元素k a 定義為: min{ | } k i j n j j i a = a a ³ a < < 。 親兄弟問題要求給定序列中每個元素的親兄弟元素的位置。元素i a 的親兄弟元素為k a 時,稱k 為元素i a 的親兄弟元素的位置。當元素i a 沒有親兄弟元素時,約定其親兄弟元素 的位置為-1。 例如,當n=10,整數序列為6,1,4,3,6,2,4,7,3,5 時,相應的親兄弟元素位 置序列為:4,2,4,4,7,6,7,-1,9,-1。 « 編程任務: 對于給定的n個整數0 1 1 , , , n- a a a 組成的序列,試用抽象數據類型棧,設計一個O(n) 時間算法,計算相應的親兄弟元素位置序列。 « 數據輸入: 由文件input.txt提供輸入數據。文件的第1 行有1 個正整數n,表示給定給n個整數。 第2 行是0 1 1 , , , n- a a a 。 « 結果輸出: 程序運行結束時,將計算出的與給定序列相應的親兄弟元素位置序列輸出到output.txt 中。 輸入文件示例 輸出文件示例 input.txt 10 4 2 4 4 7 6 7 -1 9 -1 output.txt 6 1 4 3 6 2 4 7 3 5
上傳時間: 2013-12-17
上傳用戶:shizhanincc
% EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %
標簽: multidimensional estimation algorithm Gaussian
上傳時間: 2013-12-03
上傳用戶:我們的船長
求第K個最小值 比2分法還快的算法 只要比N-1次就行
上傳時間: 2016-07-01
上傳用戶:cooran
在一個操場的四周擺放著n 堆石子。現要將石子有次序地合并成一堆。規定在合并過程 中最多可以有m(k)次選k 堆石子合并成新的一堆,2≤k≤n,合并的費用為新的一堆的石子 數。試設計一個算法,計算出將n 堆石子合并成一堆的最小總費用。
上傳時間: 2013-12-13
上傳用戶:cc1015285075
替代加密: A B C D E F G H I J K L M N O P Q R S T U V W 密文 Y Z D M R N H X J L I O Q U W A C B E G F K P 明文 X Y Z T S V I HAVE A DREAM!# 密文?? 用ARM編程實現替代加密。
標簽: 加密
上傳時間: 2016-07-17
上傳用戶:qq521
1、以不同的視角觀察球面 和圓柱面 所圍區域。2、畫出s(t)=cos(2/3πf0t)的曲線及其付氏變換的曲線.設:f0=1KHz,時域分辨率 dt=0.01ms, 采樣點數 N=2k, k>10.(均為M文件)
上傳時間: 2014-11-04
上傳用戶:wangzhen1990
K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 k-means 算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對于所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標準測度函數開始收斂為止。一般都采用均方差作為標準測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開
上傳時間: 2016-07-31
上傳用戶:youlongjian0
K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 k-means 算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對于所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標準測度函數開始收斂為止。一般都采用均方差作為標準測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開
上傳時間: 2013-12-19
上傳用戶:chenlong