This book is intended for RF planners, to serve as a practical tool in their daily work
designing indoor radio distribution systems.
Based on feedback from readers of the first edition it was clear to me that I needed to add
more material and in depth description of the basics of indoor systems based on using
repeaters; this has grown into a new Section 4.7.
There was also a strong demand to add more detail and dedicate a full chapter to radio
planning in tunnels, for both rail and road tunnels; and redundancy principles in the design
focus for solving the challenge of handover zones. An entire Chapter 11 is now dedicated to
tunnel radio planning.
We were on the lookout for ice.
I was in a 32 foot sailing yacht with writer and explorer Tristan Gooley, undertaking a
double-handed sail from Scotland through the Faroes up to 66 33 45.7 N and the midnight
sun. Now sailing out of the Arctic Circle we were approaching Iceland from the north, heading
for the Denmark Straits, where ice flowed south. The Admiralty Pilot warned of bergs but the
ice charts we had sailed with were over a week old. We needed an update.
Our original effort in writing this book was to create a starting point for those in
the business community who did not have a high level of technical expertise but
needed to have some understanding of the technical functions of their information
and communication technologies (ICT) in a corporate environment. As was true
with the first edition of this book, if you are already an engineer, find some other
form of pleasure reading—this text is not designed for you!
Never have telecommunications operations and network management been so
important. Never has it been more important to move away from practices that date
back to the very beginning of the telecommunications industry. Building and con-
necting systems internally at low cost, on an as - needed basis, and adding software
for supporting new networks and services without an overall architectural design
will not be cost effective for the future. Defi ning operations and network manage-
ment requirements at the 11th hour for new technologies, networks, and services
deployments must also change.
The roots of this book were planted about a decade ago. At that time, I became
increasingly convinced that wide-area and metropolitan-area networks, where much
of my group’s research has been centered at that time, were in good shape. Although
research in these fields was (and still is) needed, that’s not where the networking
bottleneck seemed to be. Rather, the bottleneck was (and still is in many places) in
the access networks, which choked users’ access to information and services. It was
clear to me that the long-term solution to that problem has to involve optical fiber
access networks.
Some tine ago it become apparent the the first edition of this book was rapidly approaching its sell-by date,since many aspects needed revise.There were two obvious courses of action : to forget the whole thing and concentrate my energies on other pursuits such as golf or fishing, or to embark on a new edition.For several reasons Iwas persuaded that a new edition was a worthwhile endeavour;many people had made complimentary remakrs or written complinentary letters about the first edition and I understood that it had become a recommended text for several postgraduate coures.
Changes in telecommunications are impacting all types of user
group, which include business users, traveling users, small and
home offices, and residential users. The acceptance rate of telecom-
munications and information services is accelerating significantly.
Voice services needed approximately 50 years to reach a very high
teledensity; television needed just 15 years to change the culture
and lives of many families; the Internet and its related services have
been penetrating and changing business practices and private com-
munications over the last 2 to 3 years.
Two of the major developments reshaping the telecommunications landscape are
mobile wireless connectivity and the migration of voice telephone services to IP
technology. Those two ideas come together in networks that carry voice services
over a wireless LAN (VoWLAN). The purpose of this text is to provide network
professionals with the technical background and practical guidance needed to
deploy these networks successfully.
Second-generation telecommunication systems, such as the Global System for Mobile
Communications (GSM), enabled voice traffic to go wireless: the number of mobile phones
exceeds the number of landline phones and the mobile phone penetration is approaching
100% in several markets. The data-handling capabilities of second-generation systems are
limited, however, and third-generation systems are needed to provide the high bit-rate
services that enable high-quality images and video to be transmitted and received, and to
provide access to the Web with higher data rates.