建立在數(shù)據(jù)率轉(zhuǎn)換技術(shù)之上的寬帶數(shù)字偵察接收機(jī)要求能夠?qū)崿F(xiàn)高截獲概率、高靈敏度、近乎實(shí)時(shí)的信號(hào)處理能力。雙信號(hào)數(shù)據(jù)率轉(zhuǎn)換技術(shù)是寬帶數(shù)字偵察接收機(jī)關(guān)鍵技術(shù)之一,是解決寬帶數(shù)字接收機(jī)中前端高速ADC采樣的高速數(shù)據(jù)流與后端DSP處理速度之間瓶頸問(wèn)題的可行方案。測(cè)頻技術(shù)以及帶通濾波,即寬帶數(shù)字下變頻技術(shù),是實(shí)現(xiàn)數(shù)據(jù)率轉(zhuǎn)換系統(tǒng)的關(guān)鍵技術(shù)。本文首先介紹了寬帶數(shù)字偵察接收關(guān)鍵技術(shù)之一的數(shù)據(jù)率轉(zhuǎn)換技術(shù),著重研究了快速、高精度雙信號(hào)測(cè)頻算法以及實(shí)驗(yàn)系統(tǒng)硬件實(shí)現(xiàn)。論文主要工作如下: (1)分析了現(xiàn)代電子偵察環(huán)境下的信號(hào)特征,指出寬帶數(shù)字接收機(jī)必須滿足寬監(jiān)視帶寬、流水作業(yè)以及近實(shí)時(shí)的響應(yīng)時(shí)間。給出了一種頻率引導(dǎo)式的數(shù)字接收機(jī)方案,簡(jiǎn)要介紹這種接收機(jī)的關(guān)鍵技術(shù)——快速、高精度頻率估計(jì)以及高效的數(shù)據(jù)率轉(zhuǎn)換。 (2)介紹了FFT技術(shù)在測(cè)頻算法中的應(yīng)用,比較了FFT專用芯片及其優(yōu)點(diǎn)和缺點(diǎn),指出為了滿足實(shí)時(shí)處理要求,必須選用FPGA設(shè)計(jì)FFT模塊。 (3)在分析常規(guī)的插值算法基礎(chǔ)上,提出了一種單信號(hào)的快速插值頻率估計(jì)方法,只需三個(gè)FFT變換系數(shù)的實(shí)部構(gòu)造頻率修正項(xiàng),計(jì)算量低。該方法具有精度高、測(cè)頻速率快的特點(diǎn)。 (4)基于DFT理論和自相關(guān)理論,提出了結(jié)合FFT和自相關(guān)的雙信號(hào)頻率估計(jì)算法。該方法先用DFT估計(jì)其中一個(gè)信號(hào)的頻率和幅度,以此頻率對(duì)信號(hào)解調(diào)并對(duì)消該頻率成分,最后利用自相關(guān)理論估計(jì)出另一個(gè)信號(hào)的頻率。 (5)基于DFT理論和FFT技術(shù),研究了信號(hào)平方與FFT結(jié)合的雙信號(hào)頻率估計(jì)算法。根據(jù)信號(hào)中兩頻率分量的幅度比,只需一次一維平方信號(hào)譜峰搜索,就可以得到雙信號(hào)的和頻與差頻分量的估計(jì)值,并利用插值技術(shù)提高測(cè)頻精度。該算法能夠精確地估計(jì)頻率間隔小的雙信號(hào)頻率,且容易地?cái)U(kuò)展到復(fù)信號(hào),F(xiàn)PGA硬件實(shí)現(xiàn)容易。 (6)基于現(xiàn)代譜分析理論,研究了基于AR(2)模型的雙信號(hào)頻率估計(jì)算法。方法在利用AR(2)模型系數(shù)估計(jì)雙正弦信號(hào)頻率之和的同時(shí),利用FFT快速測(cè)頻算法估計(jì)其中強(qiáng)信號(hào)分量的頻率值。算法仿真驗(yàn)證和性能分析表明了提出的算法能快速高精度地估計(jì)雙信號(hào)頻率。 (7)給出了基于頻譜重心算法的雷達(dá)雙信號(hào)頻率估計(jì)的FPGA硬件實(shí)現(xiàn)架構(gòu),并進(jìn)行了時(shí)序仿真。 (8)討論了雙信號(hào)帶寬匹配接收系統(tǒng)的硬件設(shè)計(jì)方案,給出了快速測(cè)頻及帶寬估計(jì)模塊設(shè)計(jì)。
上傳時(shí)間: 2013-06-02
上傳用戶:youke111
模糊控制是智能控制的重要組成部分,它能對(duì)那些不能建立精確數(shù)學(xué)模型的場(chǎng)合進(jìn)行有效的控制;近年來(lái),F(xiàn)PGA及EDA技術(shù)發(fā)展迅速。本論文就是要結(jié)合這兩種先進(jìn)技術(shù),在一塊FPGA芯片上實(shí)現(xiàn)一個(gè)雙輸入單輸出的模糊控制器,并嘗試將ADC和DAC集成在該芯片中,以簡(jiǎn)化系統(tǒng)設(shè)計(jì)。 首先闡述了模糊控制的理論基礎(chǔ),重點(diǎn)介紹了雙輸入單輸出的模糊控制算法;然后在簡(jiǎn)單介紹FPGA結(jié)構(gòu)和VHDL語(yǔ)言的基礎(chǔ)上,采用自項(xiàng)向下的設(shè)計(jì)方法,應(yīng)用主流EDA工具進(jìn)行模糊控制各模塊的設(shè)計(jì),并對(duì)每個(gè)模塊進(jìn)行仿真;最后將各模塊組成一完整的模糊控制器,在EDA工具上進(jìn)行仿真驗(yàn)證和編程下載,并用一個(gè)溫度控制實(shí)驗(yàn)驗(yàn)證了控制器的功能,證明該控制器滿足一般控制應(yīng)用的要求。 本論文是以VHDL和FPGA為代表的現(xiàn)代數(shù)字系統(tǒng)設(shè)計(jì)技術(shù)在智能控制領(lǐng)域應(yīng)用的一個(gè)嘗試,拓寬了模糊控制器的實(shí)現(xiàn)形式,相比于傳統(tǒng)的以單片機(jī)為載體的模糊控制器,在系統(tǒng)的簡(jiǎn)單性、實(shí)時(shí)性和經(jīng)濟(jì)性方面都有顯著的增強(qiáng),是一種值得采用的方法。 由于在算法的處理上采取了一定的簡(jiǎn)化,所以損失了一定的精度。今后可以在算法上進(jìn)行完善,設(shè)計(jì)出高精度的模糊控制器。
上傳時(shí)間: 2013-06-07
上傳用戶:haoxiyizhong
隨著電子技術(shù)的不斷發(fā)展,各種智能核儀器逐步走向自動(dòng)化、智能化、數(shù)字化和便攜式的方向發(fā)展。針對(duì)傳統(tǒng)的多道脈沖幅度分析器體積大,人機(jī)交互不友好,不方便現(xiàn)場(chǎng)分析等的缺陷[5]。新型的高速、集成度高、界面友好的多道脈沖幅度分析器的陸續(xù)出現(xiàn)填補(bǔ)了這一缺點(diǎn)。 隨著電子技術(shù)的發(fā)展,以ARM為核的處理器技術(shù)的應(yīng)用領(lǐng)域不斷擴(kuò)大,相比較單片機(jī)而言,它的主頻高、運(yùn)算速度快,可以滿足多道脈沖幅度分析器的苛刻的時(shí)間上的要求。而且ARM處理器功耗小,適合于功耗要求比較苛刻的地方,這些方面的特點(diǎn)正好滿足了便攜式多道脈沖幅度分析器野外勘察的要求。同時(shí),由于以ARM為核的處理器具有豐富的外設(shè)資源,這樣就簡(jiǎn)化了外設(shè)電路及芯片的使用,降低了功耗并增強(qiáng)了產(chǎn)品的信賴性。另外,ARM芯片可以方便的移植操作系統(tǒng),為多道脈沖幅度分析器多任務(wù)的管理和并行的處理,甚至硬實(shí)時(shí)功能的實(shí)現(xiàn)提供了前提。而且在ARM平臺(tái)使用嵌入式linux操作系統(tǒng)使多道脈沖幅度分析器的軟件易于升級(jí)。 智能化和小型化是多道脈沖幅度分析器的發(fā)展趨勢(shì)。智能化要求系統(tǒng)的自動(dòng)化程度高、操作簡(jiǎn)便、容錯(cuò)性好。智能化除了需要控制軟件外,還需要軟件命令的執(zhí)行者即硬件控制電路來(lái)實(shí)現(xiàn)相應(yīng)的控制邏輯,兩者的結(jié)合才能真正的實(shí)現(xiàn)智能化。小型化要求系統(tǒng)的體積小、功耗小、便于攜帶;小型化除了要求采用微功耗的器件,還要求電路板的尺寸盡量的小且所用元件盡量的少,但小型化的同時(shí)必須保持系統(tǒng)的智能化,即不能減少智能化所要求的復(fù)雜的邏輯和時(shí)序的控制功能。為此采用高集成度的ARM芯片實(shí)現(xiàn)控制電路能滿意地同時(shí)滿足智能化和小型化的要求。在研制的多道脈沖幅度分析器中,幾乎所有的控制都可以用控制芯片來(lái)實(shí)現(xiàn),如閾值設(shè)定、自動(dòng)穩(wěn)譜以及多道數(shù)據(jù)采集,在節(jié)省了元件的數(shù)目和電路板的尺寸的同時(shí)仍能保持系統(tǒng)的智能化程度。 Linux內(nèi)核精簡(jiǎn)而高效,可修改性強(qiáng),支持多種體系結(jié)構(gòu)的處理器等,使得它是一個(gè)非常適合于嵌入式開發(fā)和應(yīng)用的操作系統(tǒng)。嵌入式Linux可以運(yùn)行的硬件平臺(tái)十分廣泛,從x86、MIPS、POWERPC到ARM,以及其他許多硬件體系結(jié)構(gòu)。目前在世界范圍內(nèi),ARM體系結(jié)構(gòu)的SOC逐漸占領(lǐng)32位嵌入式微處理器市場(chǎng),ARM處理器及技術(shù)的應(yīng)用幾乎已經(jīng)深入到各個(gè)領(lǐng)域,例如:工業(yè)控制,無(wú)線通訊,網(wǎng)絡(luò),消費(fèi)類電子,成像等。 本課題采用三星公司生產(chǎn)的ARM(Advanced RISC Machines,先進(jìn)精簡(jiǎn)指令集機(jī)器)芯片S3C2410A設(shè)計(jì)并研制了一種便攜式的核數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)方案。利用ARM芯片豐富的外設(shè)資源對(duì)傳統(tǒng)的多道脈沖幅度分析器進(jìn)行改進(jìn)和簡(jiǎn)化。系統(tǒng)由前端探測(cè)器系統(tǒng),以及由線性脈沖放大器、甄別電路、控制電路、采樣保持電路組成的前置電路,中央處理器模塊,顯示模塊,用戶交互模塊,存儲(chǔ)模塊,網(wǎng)絡(luò)傳輸模塊等多個(gè)模塊組成。本設(shè)計(jì)基于ARM9芯片S3C2410,并在此平臺(tái)上移植了嵌入式linux操作系統(tǒng)來(lái)進(jìn)行任務(wù)的調(diào)度和處理等。 電路板核心板部分設(shè)計(jì)采用6層PCB板結(jié)構(gòu),這樣增加了系統(tǒng)可靠性,提高了電磁兼容的穩(wěn)定性。數(shù)據(jù)采集系統(tǒng)是多道脈沖幅度分析器的核心,A/D轉(zhuǎn)換直接使用了S3C2410內(nèi)置的ADC(Analog to Digital Converter,模數(shù)轉(zhuǎn)換器),在2.5 MHz的轉(zhuǎn)換時(shí)鐘下最大轉(zhuǎn)換速度500 KSPS(Kilo-Samples per second,千采樣點(diǎn)每秒),滿足了系統(tǒng)最低轉(zhuǎn)換時(shí)間≤5 μs的要求,并且控制簡(jiǎn)單,簡(jiǎn)化了外部接口電路。由于SD(Secure Digital Card,安全數(shù)碼卡)卡存儲(chǔ)容量大、攜帶方便、成本低等優(yōu)點(diǎn),所以設(shè)計(jì)中采用其作為外部的數(shù)據(jù)存儲(chǔ)設(shè)備,其驅(qū)動(dòng)部分采用SD卡軟件包,為開發(fā)帶來(lái)了方便。本設(shè)計(jì)采用640*480的6.4寸LCD(Liquid Crystal Display,液晶顯示)屏作為人機(jī)交互的顯示部分,并且通過(guò)Qt/Embedded為系統(tǒng)提供圖形用戶界面的應(yīng)用框架和窗口系統(tǒng)。其中包括了波形顯示部分和用戶菜單設(shè)置部分,這樣方便了用戶操作。系統(tǒng)的數(shù)據(jù)存取方面是基于SQLite嵌入式小型數(shù)據(jù)庫(kù)而進(jìn)行的。為了方便數(shù)據(jù)向上位機(jī)的傳輸,系統(tǒng)設(shè)計(jì)中采用XML(Extensible Markup Language,可擴(kuò)展標(biāo)記語(yǔ)言)格式來(lái)組織傳輸?shù)臄?shù)據(jù),通過(guò)基于TCP/IP(Transmission Control Protocol/Internet Protocol)協(xié)議的Linux下Socket套接字編程,來(lái)進(jìn)行與上位機(jī)或PC(Personal Computer,個(gè)人計(jì)算機(jī)或桌面機(jī))等的連接和數(shù)據(jù)傳輸。
標(biāo)簽: ARMLinux 多道 分析器 脈沖幅度
上傳時(shí)間: 2013-04-24
上傳用戶:tzl1975
比例-積分-微分(PID)是過(guò)程控制中最常用的一種控制算法。算法簡(jiǎn)單而且容易理解,應(yīng)用十分廣泛。但由于應(yīng)用領(lǐng)域的不同,功能上差別很大,系統(tǒng)的控制要求及關(guān)心的控制對(duì)象也不相同。數(shù)字PID控制比連續(xù)PID控制更為優(yōu)越,因?yàn)橛?jì)算機(jī)程序的靈活性,很容易克服連續(xù)PID控制中存在的問(wèn)題,經(jīng)修正而得到更完善的數(shù)字PID算法。本文以三相全控整流橋阻性負(fù)載為實(shí)際電路,控制主電路電壓,旨在提出一種智能數(shù)字PID控制系統(tǒng)的設(shè)計(jì)思路,并給出了詳細(xì)的硬件設(shè)計(jì)及初步軟件設(shè)計(jì)思路。 PID控制系統(tǒng)采用高性能、低功耗的ARM微處理器S3C44BO作為核心處理單元,內(nèi)部的10位ADC作為信號(hào)采集模塊,采用了矩陣鍵盤和640*480的液晶作為人機(jī)接口;串口作為通信模塊實(shí)現(xiàn)了上位機(jī)的監(jiān)控。采用芯片內(nèi)部自帶的PWM模塊,輸出16M Hz PWM信號(hào)并經(jīng)過(guò)一階低通濾波器得到0~5V的控制信號(hào)用于觸發(fā)主電路控制器,實(shí)現(xiàn)PID整定。 軟件方面,分析和研究了uC/OSⅡ的內(nèi)核源碼,實(shí)現(xiàn)了其在32位微處理器上的移植,作為管理各個(gè)子程序執(zhí)行的系統(tǒng)軟件。選用了圖形處理軟件uC/GUI用于完成LCD顯示及控制。PID算法采用了增量式數(shù)字PID算法,采用規(guī)一化算法進(jìn)行參數(shù)選取。上位機(jī)部分采用了C#語(yǔ)言進(jìn)行編寫。另外,采用了RTC(Real Time Clock)作為系統(tǒng)時(shí)鐘,可以實(shí)現(xiàn)系統(tǒng)的定時(shí)運(yùn)行、定時(shí)模式切換等。在上位機(jī)上也可以方便的控制程序的執(zhí)行,實(shí)現(xiàn)遠(yuǎn)程監(jiān)控。 在論文的最后詳細(xì)的介紹了智能PID控制系統(tǒng)在三相全控橋主電路中的具體應(yīng)用。總結(jié)了調(diào)試中遇到的問(wèn)題,對(duì)今后工作中需要進(jìn)一步改善和探索的地方進(jìn)行了展望。
標(biāo)簽: ARM PID 控制系統(tǒng)
上傳時(shí)間: 2013-08-01
上傳用戶:lvzhr
闡述了一種數(shù)字接收系統(tǒng)的設(shè)計(jì),由ADC器件AD6640和DSP. FPGA組成,具有結(jié)構(gòu)靈活、擴(kuò)展能力強(qiáng)等特點(diǎn)。本文詳細(xì)介紹了該系統(tǒng)的結(jié)構(gòu)和接口設(shè)計(jì)。
上傳時(shí)間: 2013-06-18
上傳用戶:363186
隨著水聲技術(shù)研究的不斷深入,各類水聲設(shè)備也得到迅速發(fā)展,在海洋探測(cè)、水下通信、軍事國(guó)防等方面廣為應(yīng)用。與此同時(shí),水聲數(shù)據(jù)采集系統(tǒng)也受到越來(lái)越多的關(guān)注。由于信道復(fù)雜、信號(hào)衰減大以及環(huán)境惡劣等因素的影響,設(shè)計(jì)一個(gè)可靠性高、功耗低、實(shí)時(shí)性強(qiáng)且符合水聲工程要求的數(shù)據(jù)采集系統(tǒng)成為一項(xiàng)重要任務(wù)。 本課題研究?jī)?nèi)容來(lái)源于某型水下測(cè)量系統(tǒng)。論文在分析了水聲信號(hào)特點(diǎn)的基礎(chǔ)上,闡述了用于水聲信號(hào)數(shù)據(jù)采集系統(tǒng)的設(shè)計(jì)原則。針對(duì)水聲數(shù)據(jù)采集的應(yīng)用需求,采用嵌入式ARM9處理器和嵌入式實(shí)時(shí)操作系統(tǒng)VxWorks設(shè)計(jì)并研制了一套基于ARM_VxWorks的高可靠水聲數(shù)據(jù)采集系統(tǒng)。 本設(shè)計(jì)以S3C2410嵌入式處理器,高精度ADC和以太網(wǎng)控制器CS8900以及大容量數(shù)據(jù)存儲(chǔ)器為系統(tǒng)的關(guān)鍵部件,對(duì)VxWorks操作系統(tǒng)進(jìn)行了移植,設(shè)計(jì)了配用的板級(jí)支持包,并開發(fā)了相應(yīng)的驅(qū)動(dòng)程序。 在上述基礎(chǔ)之上,針對(duì)水聲數(shù)據(jù)采集系統(tǒng)的特點(diǎn)和要求,開發(fā)了以網(wǎng)絡(luò)通信為數(shù)據(jù)傳輸手段的數(shù)據(jù)采集系統(tǒng),并實(shí)現(xiàn)串行通信和大容量數(shù)據(jù)本地存儲(chǔ)功能。 對(duì)系統(tǒng)的測(cè)試結(jié)果表明,采用ARM_VxWorks結(jié)構(gòu)的數(shù)據(jù)采集系統(tǒng)能夠有效地完成水聲數(shù)據(jù)采集任務(wù)。
標(biāo)簽: ARMVxWorks 水聲數(shù)據(jù) 采集 系統(tǒng)研究
上傳時(shí)間: 2013-06-10
上傳用戶:jichenxi0730
根據(jù)機(jī)械電子工程類專業(yè)測(cè)控實(shí)驗(yàn)教學(xué)平臺(tái)數(shù)據(jù)采集的需要,在綜合考慮成本和性能基礎(chǔ)上,提出以為主處理芯片的數(shù)據(jù)采集卡設(shè)計(jì)方案。 該方案的主要特點(diǎn)是,使用基于ARM7TDMI內(nèi)核的,工作主頻最高可達(dá)44MHz;內(nèi)置高性能的ADC和DAC模塊,采樣速度最高可達(dá)1MSPS,采樣精度為12位;模擬信號(hào)輸入通道最多可達(dá)16路,模擬信號(hào)輸出通道最高可達(dá)4路;具有豐富的外設(shè)資源可以使用,GPIO口數(shù)目最高可達(dá)40個(gè)。 在設(shè)計(jì)中采用了模塊化思想,將系統(tǒng)分為四個(gè)功能模塊:主模塊的功能是控制ADC進(jìn)行信號(hào)采集和DAC進(jìn)行模擬信號(hào)輸出;模擬信號(hào)模塊的作用是對(duì)傳感器輸入信號(hào)和DAC輸出波形進(jìn)行簡(jiǎn)單的調(diào)理;數(shù)字信號(hào)模塊引出32路數(shù)字I/O口,可用于需要采集數(shù)字量的場(chǎng)合;JTAG模塊可進(jìn)行程序的調(diào)試和下載,對(duì)于數(shù)據(jù)采集卡的二次開發(fā)有很大的作用。 在本數(shù)據(jù)采集卡上,嘗試進(jìn)行了μC/OSⅡ操作系統(tǒng)的移植,成功實(shí)現(xiàn)了四個(gè)任務(wù)的管理。在實(shí)際應(yīng)用中,工作數(shù)小時(shí)仍可保持正常的運(yùn)行。 為檢驗(yàn)數(shù)據(jù)采集卡的串口通訊能力,利用LabVIEW程序讀取下位機(jī)串口發(fā)送的已采集到的數(shù)據(jù),進(jìn)行波形圖繪制。 為檢驗(yàn)本數(shù)據(jù)采集卡的ADC和DAC精度,設(shè)計(jì)實(shí)驗(yàn)利用DAC輸出波形,并利用ADC將采集到的波形通過(guò)LabVIEW顯示,測(cè)量結(jié)果顯示兩者電壓值誤差均在可允許的3LSB(Least Significant Bit)范圍內(nèi),表明本數(shù)據(jù)采集卡已基本實(shí)現(xiàn)預(yù)期設(shè)計(jì)指標(biāo)。
標(biāo)簽: ARM 數(shù)據(jù)采集卡
上傳時(shí)間: 2013-04-24
上傳用戶:bruce
本文首先介紹了主流8位MCU(微控制器)的通用架構(gòu),通過(guò)比較分析主流國(guó)際MCU半導(dǎo)體供應(yīng)商的MCU產(chǎn)品,結(jié)合作者在德國(guó)英飛凌公司的項(xiàng)目實(shí)踐,分析了英飛凌XC866系列8位MCU的架構(gòu)特點(diǎn)和功能特性。在此基礎(chǔ)上,介紹了該MCU芯片的系統(tǒng)集成方法,以及組成模塊的架構(gòu)和功能。 LlN協(xié)議是當(dāng)前廣泛應(yīng)用的車載局部互連協(xié)議,作為英飛凌XC866MCU上很關(guān)鍵的一個(gè)外圍IP,本論文在介紹了MCU架構(gòu)基礎(chǔ)上,設(shè)計(jì)實(shí)現(xiàn)了LlN控制器。LIN協(xié)議是UART在數(shù)據(jù)鏈路層上的擴(kuò)展,其關(guān)鍵是LlN協(xié)議數(shù)據(jù)鏈路層的檢測(cè)實(shí)現(xiàn)。本文給出了一種可靠,高效的協(xié)議檢測(cè)機(jī)制,從而使軟件和硬件更好配合工作完成協(xié)議檢測(cè)。在完成LlN控制器設(shè)計(jì)后,本文結(jié)合了XC866ADC的架構(gòu),介紹了ADC模擬和系統(tǒng)的數(shù)字接口概念和實(shí)現(xiàn)要點(diǎn),介紹了如何考慮分析選擇合理的數(shù)字接口方案。論文最后以XC866的系統(tǒng)架構(gòu)為基礎(chǔ),提出了一種高效的基于FPGA的IP原型驗(yàn)證平臺(tái)方案,并以LlN控制器作為驗(yàn)證這一平臺(tái)的IP,在FPGA上成功的實(shí)現(xiàn)了驗(yàn)證方案。論文同時(shí)介紹了從SOC設(shè)計(jì)向FPGA原型驗(yàn)證轉(zhuǎn)換時(shí)的處理方法及工程經(jīng)驗(yàn),介紹了MCU及驗(yàn)證平臺(tái)的測(cè)試平臺(tái)思想,以及基于FPGA原型和邏輯分析儀實(shí)時(shí)測(cè)試的MCU固件代碼覆蓋率測(cè)試方法。 目前8位MCU在中低端的應(yīng)用越來(lái)越廣泛,特別是目前發(fā)展迅速的汽車電子和消費(fèi)電子領(lǐng)域。因此對(duì)MCU架構(gòu)的不斷研究和提高,對(duì)更多面向應(yīng)用領(lǐng)域的IP的研究和設(shè)計(jì),以及如何更快速的實(shí)現(xiàn)芯片驗(yàn)證將極大的推動(dòng)MCU在各個(gè)領(lǐng)域的應(yīng)用和推廣,將產(chǎn)生極大的經(jīng)濟(jì)和應(yīng)用價(jià)值。
上傳時(shí)間: 2013-07-14
上傳用戶:李夢(mèng)晗
將嵌入式系統(tǒng)接入Internet已經(jīng)成為嵌入式系統(tǒng)未來(lái)的發(fā)展趨勢(shì),基于ARM嵌入式系統(tǒng)實(shí)現(xiàn)Internet技術(shù)在遠(yuǎn)程監(jiān)控領(lǐng)域中的應(yīng)用,為嵌入式系統(tǒng)和監(jiān)控行業(yè)的發(fā)展起著積極推動(dòng)的作用。 本文利用32位ARM微處理器和uClinux操作系統(tǒng)為核心的嵌入式開發(fā)技術(shù)實(shí)現(xiàn)嵌入式應(yīng)用系統(tǒng)與Internet的結(jié)合,主要從嵌入式系統(tǒng)的硬件開發(fā)和軟件開發(fā)兩個(gè)方面介紹遠(yuǎn)程監(jiān)控系統(tǒng)特定應(yīng)用的實(shí)現(xiàn)。嵌入式系統(tǒng)的硬件平臺(tái)是由ARM7TDMI體系結(jié)構(gòu)的S3C44BOX微處理器和存儲(chǔ)器模塊、以太網(wǎng)接口模塊、ADC模塊等外圍設(shè)備來(lái)構(gòu)成。通過(guò)移植Bootloader和uClinux操作系統(tǒng),開發(fā)以太網(wǎng)、ADC、RTC設(shè)備驅(qū)動(dòng)程序以及嵌入式Web服務(wù)器、SMTP客戶機(jī)、嵌入式網(wǎng)關(guān)等應(yīng)用程序,完成系統(tǒng)的軟件部分。其中,利用以太網(wǎng)驅(qū)動(dòng)程序可實(shí)現(xiàn)嵌入式系統(tǒng)的獨(dú)立接入Internet功能,執(zhí)行ADC驅(qū)動(dòng)程序可對(duì)設(shè)備進(jìn)行控制完成數(shù)據(jù)采集任務(wù)。系統(tǒng)通過(guò)內(nèi)嵌的Web服務(wù)器和公共網(wǎng)關(guān)接口CGI程序,實(shí)現(xiàn)與遠(yuǎn)程Web客戶的交互,響應(yīng)客戶下達(dá)的各種監(jiān)控命令,如上傳采集的數(shù)據(jù),修改設(shè)備參數(shù),以及啟動(dòng)SMTP客戶機(jī)發(fā)送E-mail等。 本文以遠(yuǎn)程監(jiān)控應(yīng)用的需求為出發(fā)點(diǎn),以Web技術(shù)為主要手段,實(shí)現(xiàn)了嵌入式系統(tǒng)的網(wǎng)絡(luò)化,完成了嵌入式設(shè)備的遠(yuǎn)程控制和訪問(wèn)功能,不僅符合嵌入式系統(tǒng)開發(fā)的特殊要求,而且對(duì)監(jiān)控行業(yè)應(yīng)用范圍的擴(kuò)展以及應(yīng)用水平的提高有著重要意義。
標(biāo)簽: ARMuClinux 遠(yuǎn)程監(jiān)控系統(tǒng)
上傳時(shí)間: 2013-07-01
上傳用戶:hank
逆變器在自動(dòng)控制系統(tǒng)、電機(jī)交流調(diào)速、電力變換以及電力系統(tǒng)控制中都起著重要的作用;各系統(tǒng)對(duì)逆變器的性能需求也越來(lái)越高。PWM控制多重逆變器正是基于這些需求,實(shí)現(xiàn)可變頻、調(diào)壓、調(diào)相、低諧波、高穩(wěn)定性的解決方案。 PWM控制逆變器通過(guò)對(duì)每個(gè)脈沖寬度進(jìn)行控制,以達(dá)到控制輸出電壓和改善輸出波形的目的;多重逆變器則是把幾個(gè)矩形波逆變器的輸出組合起來(lái)起來(lái)形成階梯波,從而消除諧波;PWM控制多重逆變器綜合上述兩種技術(shù)的特點(diǎn),非常適合于應(yīng)用在對(duì)諧波、電壓輸出及穩(wěn)定性要求比較高的場(chǎng)合。電力半導(dǎo)體技術(shù)和集成電路技術(shù)的快速發(fā)展,使得多重逆變器的控制、實(shí)現(xiàn)成為可能。 本文首先分析風(fēng)力發(fā)電系統(tǒng)對(duì)逆變器的要求,從多重逆變器理論和PWM逆變器理論出發(fā),提出同步式PWM控制電壓型串聯(lián)多重逆變器系統(tǒng)解決方案。本方案也可以應(yīng)用在逆變電源、交流電機(jī)調(diào)速及電力變換領(lǐng)域中。 文中建立了一個(gè)多重逆變器的PWM控制算法模型。該算法可完成頻率、相位、幅值可調(diào)的多重逆變器的PWM控制,且能完成逆變器故障運(yùn)行下的保護(hù)與告警。并在MATLAB/SIMULINK環(huán)境下對(duì)算法模型進(jìn)行仿真與分析。 在比較了現(xiàn)有PWM發(fā)生解決方案的基礎(chǔ)上,本文提出了一個(gè)基于FPGA(可編程邏輯陣列)的多重逆變器PWM控制系統(tǒng)實(shí)現(xiàn)方案。并給出一個(gè)主要由FPGA、ADC/DAC、驅(qū)動(dòng)與保護(hù)電路、逆變器主回路及其他外圍電路構(gòu)成的多重逆變器系統(tǒng)解決方案。實(shí)驗(yàn)結(jié)果表明,此方案系統(tǒng)結(jié)構(gòu)簡(jiǎn)單、可行,很好完成上述多重逆變器的PWM控制算法。
上傳時(shí)間: 2013-06-28
上傳用戶:wmwai1314
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1