Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
Data Structures and Algorithms with Object-Oriented Design Patterns in Java Bruno R. Preiss B.A.Sc., M.A.Sc., Ph.D., P.Eng. Associate Professor Department of Electrical and Computer Engineering University of Waterloo, Waterloo, Canada
標簽: B.A.S R. Object-Oriented Algorithms
上傳時間: 2017-03-07
上傳用戶:z754970244
鍵盤任意輸入一個稀疏矩陣A(m*n),采用三元組存儲方法求其轉置矩陣B(n*m),并用快速轉置算法實現該操作。
上傳時間: 2013-12-08
上傳用戶:lingzhichao
(1) 、用下述兩條具體規則和規則形式實現.設大寫字母表示魔王語言的詞匯 小寫字母表示人的語言詞匯 希臘字母表示可以用大寫字母或小寫字母代換的變量.魔王語言可含人的詞匯. (2) 、B→tAdA A→sae (3) 、將魔王語言B(ehnxgz)B解釋成人的語言.每個字母對應下列的語言.
上傳時間: 2013-12-30
上傳用戶:ayfeixiao
1.有三根桿子A,B,C。A桿上有若干碟子 2.每次移動一塊碟子,小的只能疊在大的上面 3.把所有碟子從A桿全部移到C桿上 經過研究發現,漢諾塔的破解很簡單,就是按照移動規則向一個方向移動金片: 如3階漢諾塔的移動:A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,漢諾塔問題也是程序設計中的經典遞歸問題
上傳時間: 2016-07-25
上傳用戶:gxrui1991
1. 下列說法正確的是 ( ) A. Java語言不區分大小寫 B. Java程序以類為基本單位 C. JVM為Java虛擬機JVM的英文縮寫 D. 運行Java程序需要先安裝JDK 2. 下列說法中錯誤的是 ( ) A. Java語言是編譯執行的 B. Java中使用了多進程技術 C. Java的單行注視以//開頭 D. Java語言具有很高的安全性 3. 下面不屬于Java語言特點的一項是( ) A. 安全性 B. 分布式 C. 移植性 D. 編譯執行 4. 下列語句中,正確的項是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上傳時間: 2017-01-04
上傳用戶:netwolf
漢諾塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
標簽: the animation Simulate movement
上傳時間: 2017-02-11
上傳用戶:waizhang
將魔王的語言抽象為人類的語言:魔王語言由以下兩種規則由人的語言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 設大寫字母表示魔王的語言,小寫字母表示人的語言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解釋為tsaedsaeezegexenehetsaedsae對應的話是:“天上一只鵝地上一只鵝鵝追鵝趕鵝下鵝蛋鵝恨鵝天上一只鵝地上一只鵝”。(t-天d-地s-上a-一只e-鵝z-追g-趕x-下n-蛋h-恨)
上傳時間: 2013-12-19
上傳用戶:aix008
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
function [R,k,b] = msc(A) % 多元散射校正 % 輸入待處理矩陣,通過多元散射校正,求得校正后的矩陣 %% 獲得矩陣行列數 [m,n] = size(A); %% 求平均光譜 M = mean(A,2); %% 利用最小二乘法求每一列的斜率k和截距b for i = 1:n a = polyfit(M,A(:,i),1); if i == 1 k = a(1); b = a(2); else k = [k,a(1)]; b = [b,a(2)]; end end %% 求得結果 for i = 1:n Ai = (A(:,i)-b(i))/k(i); if i == 1 R = Ai; else R = [R,Ai]; end end
上傳時間: 2020-03-12
上傳用戶:15275387185