This directory contains example ADSPBF535 code, written in assembly, that changes the frequency and voltage using the push button switches on the board.
We address the problem of blind carrier frequency-offset (CFO) estimation in quadrature amplitude modulation,
phase-shift keying, and pulse amplitude modulation
communications systems.We study the performance of a standard
CFO estimate, which consists of first raising the received signal to
the Mth power, where M is an integer depending on the type and
size of the symbol constellation, and then applying the nonlinear
least squares (NLLS) estimation approach. At low signal-to noise
ratio (SNR), the NLLS method fails to provide an accurate CFO
estimate because of the presence of outliers. In this letter, we derive
an approximate closed-form expression for the outlier probability.
This enables us to predict the mean-square error (MSE) on CFO
estimation for all SNR values. For a given SNR, the new results
also give insight into the minimum number of samples required in
the CFO estimation procedure, in order to ensure that the MSE
on estimation is not significantly affected by the outliers.
This paper investigates the design of joint frequency
offset and carrier phase estimation of a multi-frequency time division
multiple access (MF-TDMA) demodulator that is applied to
a digital video broadcasting—return channel system via satellite
(DVB-RCS). The proposed joint estimation algorithm is based on
the interpolation technique for two correlation values in the frequency
and phase domains. This simple interpolation technique
can significantly improve frequency and phase resolution capabilities
of the proposed technique without increasing the number of
the correlation values. In addition, the overall block diagram of a
digital communications receiver for DVB-RCS is presented, which
was designed using the proposed estimation algorithms.
Index Terms—Carrier phase estimation, DVB-RCS, frequency
offset estimation, interpolation, joint estimation, MF-TDMA.
demodulates the FM modulated signal Y at the carrier frequency Fc (Hz). Y and Fc have sample frequency Fs (Hz).
FREQDEV is the frequency deviation (Hz) of the modulated signal.
uses the message signal X to modulate the carrier frequency Fc (Hz) and sample frequency Fs (Hz), where Fs >
2*Fc. FREQDEV (Hz) is the frequency deviation of the modulated signal.