本人編寫的incremental 隨機神經元網絡算法,該算法最大的特點是可以保證approximation特性,而且速度快效果不錯,可以作為學術上的比較和分析。目前只適合benchmark的regression問題。
具體效果可參考
G.-B. Huang, L. Chen and C.-K. Siew, “Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes”, IEEE Transactions on Neural Networks, vol. 17, no. 4, pp. 879-892, 2006.
標簽:
incremental
編寫
神經元網絡
算法
上傳時間:
2016-09-18
上傳用戶:litianchu