To use the MSSP port to communicate with 3-wire
devices, the bytes to be output must be aligned
such that the LSB of the address is the 8th bit
(LSB) of a byte to be output. From there, the
bits should fill the byte from right to left
consecutively.
memcat - Copy the value of a key to standard output
memflush - Flush the contents of your servers.
memrm - Remove a key(s) from the server.
memstat - Dump the stats of your servers to standard output
memslap - Load generation utility (benchmark!)
The AP2406 is a 1.5Mhz constant frequency, slope compensated current mode PWM step-down converter. The device integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. It is ideal for powering portable equipment that runs from a single cell lithium-Ion (Li+) battery. The AP2406 can supply 600mA of load current from a 2.5V to 5.5V input voltage. The output voltage can be regulated as low as 0.6V. The AP2406 can also run at 100% duty cycle for low dropout operation, extending battery life in portable system. Idle mode operation at light loads provides very low output ripple voltage for noise sensitive applications.
The AP2406 is offered in a low profile (1mm) 5-pin, thin SOT package, and is available in an adjustable version and fixed output voltage of 1.2V, 1.5V and 1.8V
The SP2526A device is a dual +3.0V to +5.5V USB Supervisory Power Control Switch ideal
for self-powered and bus-powered Universal Serial Bus (USB) applications. Each switch has
low on-resistance (110mΩ typical) and can supply 500mA minimum. The fault currents are
limited to 1.0A typical and the flag output pin for each switch is available to indicate fault
conditions to the USB controller. The thermal shutdown feature will prevent damage to the
device when subjected to excessive current loads. The undervoltage lockout feature will
ensure that the device will remain off unless there is a valid input voltage present.
The AZ1117 is a series of low dropout three-terminal regulators with a dropout of 1.15V at 1A output current.
The AZ1117 series provides current limiting and thermal shutdown. Its circuit includes a trimmed bandgap reference to assure output voltage accuracy to be within 1% for 1.5V, 1.8V, 2.5V, 2.85V, 3.3V, 5.0V and adjustable versions or 2% for 1.2V version. Current limit is trimmed to ensure specified output current and controlled short-circuit current. On-chip thermal shutdown provides protection against any combination of overload and ambient temperature that would create excessive junction temperature.
The AZ1117 has an adjustable version, that can provide the output voltage from 1.25V to 12V with only 2 external resistors.
High-Speed, Low-Power
Dual Operational Amplifier
The AD826 features high output current drive capability of
50 mA min per amp, and is able to drive unlimited capacitive
loads. With a low power supply current of 15 mA max for both
amplifiers, the AD826 is a true general purpose operational
amplifier.
The AD826 is ideal for power sensitive applications such as video
cameras and portable instrumentation. The AD826 can operate
from a single +5 V supply, while still achieving 25 MHz of band
width. Furthermore the AD826 is fully specified from a single
+5 V to ±15 V power supplies.
The AD826 excels as an ADC/DAC buffer or active filter in
data acquisition systems and achieves a settling time of 70 ns
to 0.01%, with a low input offset voltage of 2 mV max. The
AD826 is available in small 8-lead plastic mini-DIP and SO
packages.
This book is intended to help electric power and telephone company
personnel and individuals interested in properly protecting critical tele-
communications circuits and equipment located in high voltage (HV)
environments and to improve service reliability while maintaining safe
working conditions. Critical telecommunications circuits are often
located in HV environments such as electric utility power plants,
substations, cell sites on power towers, and standalone telecommuni-
cations facilities such as 911 call centers and mountaintop telecom-
munications sites.
Many wireless communications channels consist of multiple signal paths from the
transmitter to receiver. This multiplicity of paths leads to a phenomenon known
as multipath fading. The multiple paths are caused by the presence of objects in the
physical environment that, through the mechanisms of propagation, alter the path of
radiated energy. These objects are referred to as scatterers. In the past, researchers
often looked at ways to mitigate multipath scattering, such as in diversity systems.
Multiple-input, multiple-output (MIMO) systems, on the other hand, use multipath
diversity to their advantage; a MIMO system has the ability to translate increased
spatial diversity into increased channel capacity.
The first edition as well as its forerunner of Kuffel and Abdullah published in
1970 and their translations into Japanese and Chinese languages have enjoyed
wide international acceptance as basic textbooks in teaching senior under-
graduate and postgraduate courses in High-Voltage Engineering. Both texts
have also been extensively used by practising engineers engaged in the design
and operation of high-voltage equipment. Over the years the authors have
received numerous comments from the text’s users with helpful suggestions
for improvements. These have been incorporated in the present edition. Major
revisions and expansion of several chapters have been made to update the
continued progress and developments in high-voltage engineering over the
past two decades.