亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

交流<b>伺服</b>電機

  • 基于傳感器和模糊規則的機器人在動態障礙環境中的智能運動控制

    基于傳感器和模糊規則的機器人在動態障礙環境中的智能運動控制基于傳感器和模糊規則的機器人在動態障礙環境中的智能運動控制 oIlI~0(、r> 王 敏 金·波斯科 黃心漢 ,O、l、L (華i 面面辜寫j幕.武漢,43074) \I。L上、o 捌要:提出了一種基于傳感器和模糊規則的智能機器人運動規劃方法 .該方法運用了基于調和函數分析的人 工勢能 場原 理 .采用模糊規則 可減少推導勢能函數所 必須的計算 ,同時給機器人伺服 系統發 出指令 ,使它能夠 自動 地尋找通向目標的路徑.提出的方法具有簡單、快速的特點,而且能對 n自由度機械手的整個手臂實現最碰.建立 在非線性機器人動力學之上的整 個閉環系統和模糊控制器 的穩定性 由李雅普諾 夫原理 保證 .仿真結 果證明 了該方 法 的有效性 ,通 過比較分析顯示 出文 中所提 出的最障算法的優越性 . 美t詞:基于傳感器的機器人運動控制;模糊規則;人工勢能場;動態避障;機器人操作手 1 叫啞oducd0n R。boIsarewjdelyusedfor詛sb inchasma~ia]b柚· 血 , spot : ng, spray Ijl岫 1g, mech卸icaland elec咖 icas搴enlb1y,ma al塒 IIovaland wa時 cut· ring 咖 . ofsuch tasks_堋 llldea pri|柚ary ptd 眥 of 她 ar0botto e oncpositiontoanother withoutbur叩inginto anyobstacles. s 曲km,de. notedasthefDbotm ∞ pJan,liDgp∞ 舶1,hasbeen the倒 娜bj0ct鋤l哪gIeseat℃ll∞ . Every method o0血∞rI1ing 如b0tmotionplanninghas itsownadv∞ngesandapplicationdoma~ asweftasits di戤ldvaIIta麟 and constr~dnts. Therefore it would be ratherdifficulteithertoc0Ⅱ】paremethodsorton~ vate thechoio~ofan dl0‘iupon othP~s. 0州 d眥 :1999—07—29;Revised~ :2000一∞ 一絲 In conU~astto many n~ hods,rob

    標簽: 傳感器 機器人

    上傳時間: 2022-02-15

    上傳用戶:

  • 基于矢量控制的永磁同步交流伺服電機控制系統.

    矢量控制理論的提出1971年,由德國Blaschke等人首先提出了交流電動機的矢量控制(Transvector Contrl)理論,從理論上解決了交流電動機轉矩的高性能控制問題。其基本思想是在普通的三相交流電動機上設法模擬直流電動機轉矩控制的規律,在磁場定向坐標上,將電流矢量分解成產生磁通的勵磁電流分量ia和產生轉矩的轉矩電流分量i,并使兩分量互相垂直,彼此獨立,然后分別進行調節。這樣,交流電動機的轉矩控制,從原理和特性上就與直流電動機相似了。因此,矢量控制的關鍵仍是對電流矢量的幅值和空間位置的控制。矢量控制的目的是為了改善轉矩控制性能,而最終實施仍然是落實在對定子電流交流量)的控制上。由于在定子側的各物理量(電壓、電流、電動勢、磁動勢)都是交流量,其空間矢量在空間上以同步旋轉,調節、控制和計算均不方便。因此,需借助于坐標變換,使各物理量從靜止坐標系轉換到同步旋轉坐標系,站在同步旋轉的坐標系上觀察,電動機的各空間矢量都變成了停止矢量,在同步坐標系上的各空間矢量就都變成了直流量,可以根據轉矩公式的幾種形式,找到轉矩和被控矢量的各分量之間的關系,實時地計算出轉矩控制所需的被控矢量的各分量值--直流給定量。按這些給定量實時控制,就能達到直流電動機的控制性能。由于這些直流給定量在物理上是不存在的、虛構的,因此,還必須在經過坐標的逆變換過程,從旋轉坐標系回到靜止坐標系,把上述的直流給定量變換成實際的交流給定量,在三相定子坐標系上對交流量進行控制,使其實際值等于給定值。

    標簽: 矢量控制 交流伺服電機

    上傳時間: 2022-05-30

    上傳用戶:

  • STM32F10XXX正交編碼器接口應用筆記

    在馬達控制類應用中,正交編碼器可以反饋馬達的轉子位置及轉速信號.TM32F10x系列MCU集成了正交編碼器接口,增量編碼器可與MCU直接連接而無需外部接口電路。該應用筆記詳細介紹了STM32F1Ox與正交編碼器的接口,并附有相應的例程,使用戶可以很快地掌握其使用方法.1正交編碼器原理正交編碼器實際上就是光電編碼器,分為增量式和絕對式,較其它檢測元件有直接輸出數字量信號,慣量低,低噪聲,高精度,高分辨率,制作簡便,成本低等優點。增量式編碼器結構簡單,制作容易,一般在碼盤上刻A.B.Z三道均勻分布的刻線,由于其給出的位置信息是增量式的,當應用于伺服領域時需要初始定位格雷碼絕對式編碼器一般都做成循環二進制代碼,碼道道數與二進制位數相同。格富碼絕對式編碼器可直接輸出轉子的絕對位置,不需要測定初始位置,但其工藝復雜、成本高,實現高分辨率、高精度較為困難。本文主要針對增量式正交編碼器,它產生兩個方波信號A和B,它們相差+-90.其符號由轉動方向決定。如下圖所示:圖1:增量式正交編碼器輸出信號波形2 STM32F10x正交編碼器接口詳述STM32F10x的所有通用定時器及高級定時器都集成了正交編碼器接口,定時器的兩個輸入TII和TI2直接與增量式正交編碼器接口,當定時器設為正交編碼器模式時,這兩個信號的邊沿作為計數器的時鐘,而正交編碼器的第三個輸出(機械零位),可連接外部中斷口來觸發定時器的計數器復位.

    標簽: stm32 接口 正交編碼器

    上傳時間: 2022-06-18

    上傳用戶:zhanglei193

  • 小型交流伺服電機控制電路設計

    小型交流電機設計資料,主要用于無刷電機設計。

    標簽: 交流伺服電機

    上傳時間: 2022-07-03

    上傳用戶:

  • VIP專區-三菱PLC A系列、FX系列、Q系列資料合集

    資源包含以下內容:1.三菱PLC A系列 AD 變換模塊A1S68AD.pdf2.三菱PLC A系列 CPU模塊Q2ASCPU.pdf3.三菱PLC A系列 DA 變換模塊A1S62DA .pdf4.三菱PLC A系列 GPPWLLT編程調試程序.pdf5.三菱PLC A系列 Io link 網絡系統模塊A1SJ51T64.pdf6.三菱PLC A系列 QnACPU 編程參考.pdf7.三菱PLC A系列 Q系列 CC-LINK網絡系統.pdf8.三菱PLC A系列 余CPU模塊Q4ARCPU.pdf9.三菱PLC A系列 模擬輸入輸出模塊A1S66ADA.pdf10.三菱PLC A系列 熱電偶溫度數字變化模塊A1S68TD .pdf11.三菱PLC A系列 網絡系統.pdf12.三菱PLC A系列 網絡系統設置.pdf13.三菱PLC A系列 遠程網絡篇.pdf14.三菱PLC A系列 高速記數模塊A1SD62.pdf15.三菱PLC FX-20P-E手持編程器操作手冊.pdf16.三菱PLC FX1N使用手冊.pdf17.三菱PLC FX1S,FX1N,FX2N,FX2NC系列編程手冊.pdf18.三菱PLC FX2N-10GM和20GM硬件、編程手冊.pdf19.三菱PLC FX2N-10PG用戶手冊.pdf20.三菱PLC FX2N-2LC溫度控制模塊用戶手冊.pdf21.三菱PLC FX2N-5A特殊功能模塊用戶手冊.pdf22.三菱PLC FX2N使用手冊.pdf23.三菱PLC FX3U FX3UC編程手冊(基本)應用指令說明書.pdf24.三菱PLC FX3UC使用手冊(硬件篇).pdf25.三菱PLC FX3U·FX3UC用戶手冊(定位控制篇).pdf26.三菱PLC FX3U·FX3UC用戶手冊(模擬量控制篇).pdf27.三菱PLC FX3U硬件手冊.pdf28.三菱PLC FX中文文字版002.pdf29.三菱PLC FX系列特殊功能模塊手冊b.pdf30.三菱PLC FX系列特殊功能模塊用戶手冊.pdf31.三菱PLC FX通訊用戶手冊.pdf32.三菱PLC QCPU用戶手冊(功能解說-程序基礎篇).pdf33.三菱PLC QCPU(Q系列)QnACPU編程手冊(PID控制指令篇).pdf34.三菱PLC QCPU-QnACPU 編程手冊(SFC 控制指令篇).pdf35.三菱PLC Q系列 +series+temperature+control+module+user+manual.pdf36.三菱PLC Q系列 CC-LinK Safety系統 主站模塊 詳細篇.pdf37.三菱PLC Q系列 CC-LINK SAFETY系統遠程Io模塊 詳細篇.pdf38.三菱PLC Q系列 CC-Link數字模擬變換模塊.pdf39.三菱PLC Q系列 CC-Link本地站模塊.pdf40.三菱PLC Q系列 CC-link系統主站本地站模塊用戶手冊.pdf41.三菱PLC Q系列 CC-link系統小型IO模塊用戶手冊(詳細篇).pdf42.三菱PLC Q系列 CC-Link遠程IO模塊.pdf43.三菱PLC Q系列 CPU 功能解說 程序基礎.pdf44.三菱PLC Q系列 Fl net(OPCN-2)接口模塊用戶手冊.pdf45.三菱PLC Q系列 GX comfinurator-DP Version.pdf46.三菱PLC Q系列 G網絡系統 控制網絡篇.pdf47.三菱PLC Q系列 H網絡系統 plc至plc網絡.pdf48.三菱PLC Q系列 IO模塊用戶手冊.pdf49.三菱PLC Q系列 manual list price 2005-07.pdf50.三菱PLC Q系列 MELSEC通訊協議用戶手冊.pdf51.三菱PLC Q系列 MES接口模塊.pdf52.三菱PLC Q系列 PROFIBUS-DP從站模塊.pdf53.三菱PLC Q系列 PROFIBUS-DP接口模塊(詳細篇).pdf54.三菱PLC Q系列 Q62DA,Q64DA,Q68DAI,Q68DAV用戶手冊.pdf55.三菱PLC Q系列 Q62HLC用戶手冊.pdf56.三菱PLC Q系列 Q64RD 熱電阻輸入模塊用戶手冊.pdf57.三菱PLC Q系列 Q66DA-G用戶手冊(詳細篇).pdf58.三菱PLC Q系列 QCPU+Users+Manual(Hardware+Design).pdf59.三菱PLC Q系列 QCPU用戶手冊(多CPU系統).pdf60.三菱PLC Q系列 QD62,QD62D,QD62E用戶參考手冊.pdf61.三菱PLC Q系列 QD70定位模塊用戶手冊.pdf62.三菱PLC Q系列 QD72P3C3型內置計數器功能定位模塊 詳細篇.pdf63.三菱PLC Q系列 QD75P定位模塊用戶手冊(硬件篇).pdf64.三菱PLC Q系列 QD75P定位模塊用戶手冊(詳細篇).pdf65.三菱PLC Q系列 QJ61CL12用戶手冊(詳細篇).pdf66.三菱PLC Q系列 QJ71PB92D用戶手冊(詳細篇).pdf67.三菱PLC Q系列 QJ71PB93D用戶手冊.pdf68.三菱PLC Q系列 QJ71WS96用戶手冊(詳細篇).pdf69.三菱PLC Q系列 QnACPU編程手冊 公共指令.pdf70.三菱PLC Q系列 QnACPU編程手冊(PID控制指令篇).pdf71.三菱PLC Q系列 QnAprogram(add).pdf72.三菱PLC Q系列 QnA編程手冊.pdf73.三菱PLC Q系列 QnPRHCPU用戶手冊冗余系統篇.pdf74.三菱PLC Q系列 QnPRHCPU編程手冊(過程控制指令).pdf75.三菱PLC Q系列 QS CPU 功能解說 程序基礎篇.pdf76.三菱PLC Q系列 QS CPU 硬件設計 維護點檢篇.pdf77.三菱PLC Q系列 QSCPU公共指令篇.pdf78.三菱PLC Q系列 Q基本模式CPU硬件設計保養.pdf79.三菱PLC Q系列 Q系列H網主-從站使用手冊.pdf80.三菱PLC Q系列 Q系列I-O模塊使用手冊.pdf81.三菱PLC Q系列 Q系列MELSECNETH網絡系統參考手冊(遠程IO網絡).pdf82.三菱PLC Q系列 Q系列MELSECNETH遠程IO模塊.pdf83.三菱PLC Q系列 Q高性能CPU功能解說程序基礎.pdf84.三菱PLC Q系列 SW0IVNT-CSKP通信包入門手冊.pdf85.三菱PLC Q系列 以太網模塊基礎.pdf86.三菱PLC Q系列 以太網模塊用戶手冊(web功能篇).pdf87.三菱PLC Q系列 以太網(應用篇).pdf88.三菱PLC Q系列 冗余系統用戶手冊.pdf89.三菱PLC Q系列 基本模式CPU功能解說程序基礎篇.pdf90.三菱PLC Q系列 多通道高速計數器模塊 詳細篇.pdf91.三菱PLC Q系列 安全應用程序指南.pdf92.三菱PLC Q系列 定位模塊QD75P QD75D詳細篇.pdf93.三菱PLC Q系列 數模轉換模塊.pdf94.三菱PLC Q系列 模數轉換模塊 用戶手冊.pdf95.三菱PLC Q系列 模數轉換模塊.pdf96.三菱PLC Q系列 溫度控制模塊用戶手冊.pdf97.三菱PLC Q系列 熱電偶輸入模塊 通道絕緣形型電偶 微電壓輸入模塊.pdf98.三菱PLC Q系列 類串行口通信模塊 應用篇.pdf99.三菱PLC Q系列 編程手冊(SFC).pdf100.三菱PLC Q系列 通信協議.pdf101.三菱PLC Q系列 高速計數器模塊.pdf102.三菱PLC Q系列(硬件設計維護點檢篇).pdf103.三菱PLC Q系類 串行口通信模塊 基礎篇.pdf104.三菱PLC X2N-16CCL-M和FX2N-32CCL CC-Link主站模塊和接口模塊用戶手冊.pdf105.三菱PLC X3U用戶手冊(硬件手冊).pdf106.伺服電機使用手冊Vol.2.pdf107.運動控制器(實模式).pdf108.運動控制器(虛模式).pdf109.運動控制器使用手冊SFC編程手冊.pdf110.運動控制器用戶手冊.pdf111.三菱PLC A系列、FX系列、Q系列資料合集

    標簽: 激光

    上傳時間: 2013-04-15

    上傳用戶:eeworm

  • 永磁同步電動機弱磁調速控制.rar

    作為數控機床、機器人等的重要組成部分,隨著加工制造、汽車等行業的發展,永磁交流伺服系統成為國內外研究和應用的一個重要領域。同時隨著功率電子器件和微處理器的進步,伺服系統也逐步向全數字化方向發展,全數字化系統具有可靠性高、實現新控制策略容易、功能豐富等優點。 本文論述了永磁同步電機空間矢量脈寬調制控制的最新發展,分析了從基礎理論到最新的控制算法的有關永磁同步電機空間矢量控制的許多問題。在對永磁同步電動機(PMSM)的數學模型和控制理論進行全面、深入研究的基礎上,本文在PMSM 的電壓空間矢量的弱磁控制方面做了大量的理論和實驗研究,提出一種基于空間矢量PWM (SVPWM)的PMSM 定子磁鏈弱磁控制定方法,在電機轉速達到基本轉速之前采用最大轉矩/電流策略控制,超過基本轉速之后采用弱磁擴速的電流控制策略,使電機具有更大的調速空間,該策略可實現電壓矢量近似連續調節,有效減小了PMSM 的轉矩脈動,提高了系統的性能,仿真結果證明了這一結論。 在上述工作的基礎上,研制開發了一套基于TMS320LF2407A 的高性能全數字永磁交流調速系統。該系統以空間矢量PWM 控制為核心。

    標簽: 永磁同步電動機 調速控制

    上傳時間: 2013-06-08

    上傳用戶:bjgaofei

  • 電梯門機控制系統的研究.rar

    文中設計完成了以數字信號處理器DSP為控制核心,以智能控制功率模塊IPM為驅動,以無刷直流電機作為伺服電機的一套高性能的電梯門機交流伺服系統。 論文闡述了設計的目的,給出了電機的選擇,介紹了無刷直流電機的優點;說明了門機運行曲線的形成及加減速運行時按S曲線方式運行的優點,并給出了加減速運行時S曲線的具體形成方法;針對門機控制系統的控制策略進行了詳細的研究,將自適應控制理論引入了電梯的門機控制系統中,并針對模型參考自適應控制的方法進行了分析,該方法的實施使系統的性能得到了提高。 系統采用TMS320LF2407A作為電梯的門機控制系統的核心控制器,對TMS320LF2407A作了詳細的介紹。文中對系統采用了全數字化設計,完成了總體硬件電路的設計,主要包括計算控制電路、信號采集電路、鍵盤輸入及顯示電路、驅動及保護電路等,并對每一部分電路的設計進行了具體的說明;驅動電路選用了智能控制功率模塊IPM,并針對所選模塊進行了說明。 在系統軟件設計中,采用對曲線進行離散的方式,給出了門機運行的參考模型,并根據采集的信號與參考模型進行對比,求出加/減速運行時S曲線實現的補償算法;并針對運行參數變化的影響,提出了對門機系統進行自適應控制的方法,給出了系統軟件的流程。 通過對系統的硬件及軟件的設計,實現了對電梯門機系統安全、可靠、平穩控制的目的。

    標簽: 電梯門 控制系統

    上傳時間: 2013-06-22

    上傳用戶:哇哇哇哇哇

  • 低速直驅永磁同步電動機的研究.rar

    在工農業生產和自動控制方面,經常要用到低速驅動,以前一般采用電動機加減速器或永磁感應子式電動機來實現,但是他們存在著很多缺點和不足。隨著分數槽繞組結構的提出,分數槽永磁同步電機在低速驅動領域的應用越來越廣泛。本文將對這種特殊結構的電機進行詳細的介紹和分析。 分數槽繞組和整數槽繞組是電機繞組的兩種重要形式。本文首先從電機結構和繞組電感兩個方面對分數槽繞組電機和整數槽繞組電機進行比較,以加深對分數槽繞組結構的理解。分數槽繞組也存在對稱性問題,即并不是所有的分數槽繞組都是各相對稱的,接下來本文給出了分數槽繞組的對稱條件,為分數槽繞組電機的設計提供依據。在分數槽電機中,節距y=1的分數槽繞組是一種非常重要的繞組,是中小型永磁電機和永磁交流伺服電機使用最多的的分數槽繞組,本文將對這種繞組形式進行詳細介紹,為了便于以后分析和應用,還將給出這類電機常用的極槽配合和繞組的各種參數。整數槽電機60°相帶繞組的排列比較簡單,分數槽電機則顯的比較復雜,本文將具體介紹兩種繞組排列方法來解決這一問題。

    標簽: 低速 直驅 永磁同步電動機

    上傳時間: 2013-04-24

    上傳用戶:lw4463301

  • 電機傳動系統參數辨識方法的研究.rar

    在早期階段,直流調速系統在傳動領域中占統治地位。然而,從60年代后期開始,交流電動機在工業應用領域正在取代直流電動機,交流傳動變得越來越經濟和受歡迎。永磁交流伺服系統作為電氣傳動領域的重要組成部分,在工業、農業、航空航天等領域發揮越來越重大的作用。永磁同步電動機以其特點廣泛應用于中小功率傳動場合,成為研究的重要領域。然而,永磁同步電動機具有較大的轉動脈動,而對于這些應用場合,轉矩平滑通常是基本要求。因此,對永磁交流伺服系統的應用,必須考慮其轉矩脈動的抑制問題。本文針對電機傳動系統中參數變化對電機性能的影響,以永磁同步電機為例,圍繞如何通過參數辨識來提高永磁同步電動機的控制性能,借助自行開發的全數字永磁交流伺服系統平臺,對永磁同步電動機的磁場定向控制,參數辨識,神經網絡和擴展卡爾曼濾波在控制系統中的應用,抑制轉矩脈動,提高系統性能幾個方面展開深入的研究。 本文從永磁同步電動機及其控制系統的基本結構出發,對通過參數辨識抑制轉矩脈動進行了較為細致的分析。針對不同情況,通過改進電機的控制系統,提出了多種參數辨識方法。主要內容如下: 1、基于定子磁鏈方程,建立了永磁同步電動機的一般數學模型。經坐標變換,得出在靜止兩相(α—β)坐標系和旋轉兩相(d—q)坐標系下永磁同步電動機電壓方程和轉矩方程。 2、分析了永磁同步電動機id=0矢量控制系統的工作原理,介紹了永磁同步電動基于磁場定向的矢量控制的基本概念。經對永磁同步電動機系統進行分析,推導并建立了id=0控制時整個電機系統的數學模型。 3、基于超穩定性理論的模型參考自適應控制原理,設計了一種模型參考自適應控制系統,考慮電機參數的時變性,對永磁交流伺服系統的繞組電阻和電機負載轉矩辨識進行了研究,以保持系統的動態性能。利用Matlab/Simulink建立仿真模型,對控制性能進行了驗證,仿真實驗證明這種方法的可行性。 4、人工神經網絡具有很強的學習性能,經過訓練的多層神經網絡能以任意精度逼近非線性函數,因此為非線性系統辨識提供了一個強有力的工具。本章針對永磁同步電機提出了一種以電機輸出轉速為目標函數的神經網絡控制方案,同時應用人工神經網絡理論建立和設計了負載轉矩擾動辨識的算法以及相應的控制系統的補償方法,并應用MATLAB軟件進行了計算機仿真,仿真證明和傳統的控制方法相比,以電機輸出轉速為指導值和目標函數的神經網絡控制方案能有效地提高神經網絡的收斂速度,能有效地改善控制系統的動態響應,具有跟蹤性能好和魯棒性較強等優點。 5、電機的參數會隨著溫升和磁路飽和發生變化,需進行在線實時辨識。本文利用電機的定子電流、電壓和轉速,采用遞推最小二乘法進行在線參數辨識,該方法不需要觀測的磁鏈信號,消除了磁鏈觀測和參數辨識的耦合。電機狀態方程由于存在狀態變量的乘積項,對電機參數辨識以后,仍然是非線性方程,為了對電機狀態方程進行狀態估計,得到電機的參數辨識值,本文采用擴展卡爾曼濾波進行狀態估計,對以上方法的仿真實驗得到了滿意的結果。 6、本文基于數字電機控制專用DSP自行開發了全數字永磁交流伺服系統平臺,通過軟件實現擴展卡爾曼濾波對電阻和磁鏈的估計,以及基于磁場定向的空間矢量控制算法,獲得了令人滿意的實驗結果,證明擴展卡爾曼濾波算法對電阻和磁鏈的實時估計是很準確的,由此構成的永磁交流伺服系統具有良好的靜、動態性能。

    標簽: 電機 傳動系統 參數辨識

    上傳時間: 2013-07-28

    上傳用戶:鳳臨西北

  • 基于卡爾曼濾波算法的永磁同步電機無速度傳感器控制研究.rar

    永磁同步電機是同步電機的一個重要類型,其轉子一般采用稀土永磁材料做激磁磁極,與傳統同步電機相比,體積和重量大為減小,而且結構簡單,運行可靠,維護更方便。現代電氣傳動控制的發展趨勢之一是開發新的交流調速與伺服系統。無論在矢量控制還是標量控制中,轉速與位置的閉環控制都需要在電機軸上安裝一個速度傳感器,但是由于速度傳感器的引進不僅增加了成本,降低了系統可靠性,還存在安裝問題,效果并不十分理想。因此高性能無速度傳感器控制成為近年來電機研究的熱點。 本文在系統介紹卡爾曼濾波器的基礎上,將其引入到永磁同步電機無速度傳感器狀態觀測中。由于永磁同步電機是一個強耦合的多階非線性系統,本文采用了工程實際中普遍采用的泰勒展開式截斷的方法,對電機方程線性化處理,將卡爾曼濾波算法推廣至非線性系統,并加入了反映電機系統模型誤差和環境干擾的系統噪聲和測量噪聲模型,形成擴展卡爾曼濾波算法。擴展卡爾曼濾波器將電機轉子位置與轉速作為系統狀態變量進行實時估算,并將所得信息反饋到永磁同步電機控制系統中。通過仿真,與電機實際運行狀態進行比較,證明了擴展卡爾曼濾波具有良好的動態跟蹤能力和抗噪聲能力。 針對擴展卡爾曼濾波算法在無速度傳感器控制中存在的不足,本文給出了降階線性卡爾曼濾波算法。降階線性卡爾曼濾波算法重新選擇了系統狀態變量,建立新的完全線性化的系統方程,并且卡爾曼濾波算法中的系統協方差矩陣成為時不變序列,因此可以直接應用線性卡爾曼濾波算法。仿真結果證明,與擴展卡爾曼濾波算法相比,新的算法更加簡單,減輕了繁重的參數調節任務,易于數字化實現,不僅具備擴展卡爾曼濾波算法的優勢,而且在某些性能方面超越了擴展卡爾曼濾波算法。 通過分析得知,由于將系統模型不確定性與測量噪聲體現在系統方程中,因此卡爾曼濾波算法在狀態估算方面具有良好的性能。本文以降階線性卡爾曼濾波 算法為理論基礎,以永磁同步電機為對象,以數字信號處理器(DSP)為核心,設計了電機狀態觀測系統的設計方案。整個方案在不增加成本的基礎上,充分利用數字信號處理器(DSP)豐富的資源和強大的運算能力,通過檢測電機相電流,實時估算出電機轉子位置與轉速。本系統可以代替傳統速度傳感器,為電機控制系統提供轉子位置和轉速反饋信息。本文的下一步主要工作便是將此系統付諸實踐,應用于實際工程中,對卡爾曼濾波算法在永磁同步電機無速度傳感器控制方面的性能進行進一步研究。關鍵詞:永磁同步電機;無速度傳感器;卡爾曼濾波

    標簽: 卡爾曼 濾波算法 永磁同步電機

    上傳時間: 2013-04-24

    上傳用戶:lifangyuan12

主站蜘蛛池模板: 健康| 新竹县| 海安县| 松阳县| 察隅县| 高唐县| 天台县| 如东县| 桐庐县| 紫金县| 博兴县| 张家界市| 兴文县| 北票市| 石景山区| 勐海县| 晋城| 宜良县| 西丰县| 潜江市| 绍兴市| 鄂托克前旗| 阳谷县| 黎川县| 海南省| 油尖旺区| 平定县| 大同市| 固阳县| 桑日县| 井研县| 大宁县| 安平县| 普定县| 平武县| 白河县| 怀化市| 久治县| 临夏县| 特克斯县| 夏津县|