摘要本文以音響放大系統(tǒng)為研究對象,以電子技術基本理論為基礎,結合當前模擬電子應用技術,對音響放大系統(tǒng)進行了分析和研究,針對現代人群對功放效率的要求和特征,設計出該音響放大系統(tǒng)。音響的音質是音響最重要的環(huán)節(jié),由于我國在高級音響的設計上起步較晚,對新技術的開發(fā)與應用遠遠落后于國外的發(fā)大國家,從放大電路的設計,揚聲器的設計,對音像的還原,降低信噪比,低音的厚重感等等都遠遠超出我國自主產品,但是我國的音響企業(yè)已認識到技術的不足,正在加大研發(fā)的投入,培養(yǎng)技術人才,努力學習和趕超國外的先進技術。本文對現代高級音響設計的工藝有初步的了解,研究高級音響設計的電路組成,能夠理解電路圖的原理,對新技術、新知識進行研究學習,并將所學用于實踐在現代音有普及中,人們因生活層次、文化習俗、音樂修養(yǎng)、欣賞口味的不同,令對相通電氣指標的音響設備得出不同的評價。所以,就高保真度功放而言,應該達到電氣指標與實際聽音指標的平衡與統(tǒng)一。隨者技術的發(fā)展,人民生活水平的提高,人們對音頻技術的功放的效率要求隨之提高。模擬的功率放大器經過了幾十年的發(fā)展,在這方面的技術已經相當成熟。正因為這樣,數字功放應運而生。近年來,利用脈寬調劑原理設計的D類功放也進入了音響領域".國外半導體一直專注于研發(fā)高性能的放大器與比較器,目前已成功推出一系列型號齊全的運算放大器,其中包含基本的芯片以及特殊應用標準產品(ASSP),以滿足市場上對高精度、高速度、低電壓及低功率放大器的需求。另外國外在數字音頻功率放大器領城進行了二三十年的研究,六十年代中期,日本研制出8bit數字音頻功率發(fā)大器。1893年,M.B.Sandler等學者提出D類數字PCM功率發(fā)大器的基本結構。主要是圍繞如何將PCM信號轉化為PWM信號。把信號的幅度信號用不同的脈沖寬度來表示。此后,研究的焦點是降低其時鐘頻率,提高音質。隨若數字信號處理(DSP)技術和新型功率器件及應用的發(fā)展,開始實用化的16位數字音額功放成為可能。
標簽: 音響電路
上傳時間: 2022-06-18
上傳用戶:
本文主要是基于氮化鋅(GaN)器件射頻功率放大電路的設計,在s波段頻率范圍內,應用CREE公司的氮化稼(GaN)高電子遷移速率品體管(CGH40010和CGH40045)進行的寬帶功率放大電路設計.主要工作有以下幾個方面:首先,設計功放匹配電路。在2.7GHz~3.5GHz頻帶范圍內,對中間級和末級功放晶體管進行穩(wěn)定性分析并設置其靜態(tài)工作點,繼而進行寬帶阻抗匹配電路的設計。本文采用雙分支平衡漸變線拓撲電路結構,使用ADS軟件對其進行仿真優(yōu)化,設計出滿足指標要求的匹配電路。具體指標如下:通帶寬度為800MHz,在通帶范圍內的增益dB(S(2,1)>)10dB、駐波比VSWR1<2.VSWR2<2,3dB輸出功率壓縮點分別大于40dBm46dBm,效率大于40%.其次,設計功放偏置電源電路。電路要求是負電壓控制正電壓并帶有過流保護功能,借助Orcad模擬電路仿真軟件,設計出滿足要求的電源電路。最后,分別運用AutoCAD和Altium Designer Summer 08制圖軟件,繪制了功率放大電路和偏置電源電路的印制電路板,并通過對硬件電路的調試,最終使得整體電路滿足了設計性能的要求。
上傳時間: 2022-06-20
上傳用戶:
ASR M08-B設置軟件 V3.2 arduino 2560+ASRM08-B測試程序 arduino UNO+ASRM08-B測試程序語音控制臺燈電路圖及C51源碼(不帶校驗碼) 繼電器模塊設置。 ASR M08-B是一款語音識別模塊。首先對模塊添加一些關鍵字,對著該模塊說出關鍵字,串口會返回三位的數,如果是返回特定的三位數字,還會引起ASR M08-B的相關引腳電平的變化。【測試】①打開“ASR M08-B設置軟件 V3.2.exe”。②選擇“串口號”、“打開串口”、點選“十六進制顯示”。③將USB轉串口模塊連接到語音識別模塊上。接線方法如下:語音模塊TXD --> USB模塊RXD語音模塊RXD --> USB模塊TXD語音模塊GND --> USB模塊GND語音模塊3V3 --> USB模塊3V3(此端為3.3V電源供電端。)④將模塊的開關撥到“A”端,最好再按一次上面的大按鈕(按一次即可,為了確保模塊工作在正確的模式)。⑤對著模塊說“開燈”、“關燈”模塊會返回“0B”、“0A”,表示正常(注意:0B對應返回值010,0B對應返回值010,返回是16進制顯示的嘛,設置的時候是10進制設置的)。
標簽: ASR M08-B
上傳時間: 2022-07-06
上傳用戶:aben
專輯類-器件數據手冊專輯-120冊-2.15G Tmos功率場效應晶體管原理和應用-292頁-9.9M.pdf
上傳時間: 2013-07-06
上傳用戶:wang5829
專輯類-器件數據手冊專輯-120冊-2.15G 國內外功率晶體管實用手冊-下冊-1439頁-20.5M.pdf
上傳時間: 2013-04-24
上傳用戶:mpquest
專輯類-器件數據手冊專輯-120冊-2.15G VMOS功率場效應晶體管及其應用-225頁-3.2M.pdf
上傳時間: 2013-04-24
上傳用戶:vans
專輯類-器件數據手冊專輯-120冊-2.15G 新編功率晶體管實用手冊-NPN管-1404頁-35.4M.pdf
上傳時間: 2013-04-24
上傳用戶:gzming
射頻功率放大器存在于各種現代無線通信系統(tǒng)的末端,所以射頻功率放大器性能的優(yōu)劣直接影響到整個通信系統(tǒng)的性能指標。如何在兼顧效率的前提下提高功放的線性度是近年來國內外的研究熱點,在射頻功率放大器的設計過程中這是非常重要的問題。 作為發(fā)射機末端的重要模塊,射頻功率放大器的主要任務是給負載天線提供一定功率的發(fā)射信號,因此射頻功率放大器一般都工作在大信號條件下。所以設計射頻功率放大器時,器件的選型和設計方式都和一般的小信號放大器不同,尤其在寬帶射頻功率放大器的設計過程中,由于工作頻帶很寬,且要綜合考慮線性度和效率問題,所以射頻功率放大器的設計難度很大。 本文設計了一個工作頻帶為30-108MHz,增益為25dB的寬帶射頻功率放大器。由于工作頻帶較寬,輸出功率較大,線性度要求高;所以在實際的過程中采用了寬帶匹配,功率回退等技術來達到最終的設計目標。 本文首先介紹了關于射頻功率放大器的一些基礎理論,包括器件在射頻段的工作模型,使用傳輸線變壓器實現阻抗變換的基本原理,S參數等,這些是設計射頻功率放大器的基本理論依據。然后本文描述了射頻功率放大器非線性失真產生的原因,在此基礎上介紹了幾種線性化技術并做出比較。然后本文介紹了射頻功率放大器的主要技術指標并提出一種具體的設計方案,最后利用ADS軟件對設計方案進行了仿真。仿真過程包括兩個步驟,首先是進行直流仿真來確定功放管的靜態(tài)工作點,然后進行功率增益即S21的仿真并達到設計要求。
上傳時間: 2013-07-28
上傳用戶:gtf1207
由于絕緣柵雙極晶體管IGBT具有工作頻率高、處理功率大和驅動簡單等諸多優(yōu)點,在電力電子設備、尤其是中大型功率的電力電子設備中的應用越來越廣泛。但是,IGBT失效引發(fā)的設備故障往往會對生產帶來巨大影響和損失,因此,對IGBT的失效研究具有十分重要的應用意義。 本文在深入分析IGBT器件工作原理和工作特性的基礎上,采用雙極傳輸理論聯(lián)立求解電子和空穴的傳輸方程,得到了穩(wěn)態(tài)時電子和空穴電流的表達式,對造成IGBT失效的各種因素進行了詳細分析。應用MATLAB軟件,對硅參數的熱導率、載流子濃度、載流子壽命、電子遷移率、空穴遷移率和雙極擴散系數等進行了仿真,深入研究了IGBT的失效因素,得到了IGBT失效的主要原因是發(fā)生擎住效應以及泄漏電流導致IGBT延緩失效的有用結論。并且,進行了IGBT動態(tài)模型的設計和仿真,對IGBT在短路情況下的失效機理進行了深入研究。 考慮到實際設備中的IGBT在使用中經常會發(fā)生反復過流這一問題,通過搭建試驗電路,著重對反復過流對IGBT可能帶來的影響進行了試驗研究,探討了IGBT因反復過流導致的累積失效的變化規(guī)律。本文研究結果對于正確判斷IGBT失效以及失效程度、進而正確判斷和預測設備的可能故障,具有一定的應用參考價值。
上傳時間: 2013-08-04
上傳用戶:lrx1992
目前國內井下水泵電機多數采用傳統(tǒng)的人工進行控制,即人工加繼電器進行控制的方法。這種方法控制線路復雜,設備運行的自動化程度低,可靠性差,工人勞動強度大,應急能力差等缺點。針對當前國家對煤礦企業(yè)安全生產要求的不斷提高和企業(yè)自身發(fā)展所遇到的實際問題,研制了基于ARM的煤礦井下水泵電機網絡監(jiān)控系統(tǒng),不僅可以完成水位檢測、軸溫檢測、流量檢測、水泵起動、停止及其過程控制,而且還可以進行數據傳輸、處理等工作。它具有以下特點:水位實時在線檢測與顯示;水泵啟動與停止控制;多臺水泵實時“輪班工作制”;根據涌水量大小和用電“避峰就谷”原則,控制投入運行的水泵臺數;與監(jiān)控中心聯(lián)網,實行集中控制。 本文所設計的監(jiān)控系統(tǒng)由監(jiān)控中心、監(jiān)控終端和遠程訪問三部分組成,分別介紹了監(jiān)控系統(tǒng)的硬件設計、電機保護算法設計、系統(tǒng)通訊網絡的設計和監(jiān)控系統(tǒng)軟件的設計。 監(jiān)控系統(tǒng)的硬件設計主要針對監(jiān)控終端的硬件設計,它采用S3C440X作為監(jiān)控終端的處理芯片。根據監(jiān)測的主要參數如水泵電機電流、電壓、水泵開停狀態(tài)、電機溫度、井底水倉水位、水泵出口流量的實際特點,通過ARM芯片的快速處理運算能力,實時計算出水泵的三相有功功率和無功功率、功率因數等參量,井底水倉的水位和水泵出水口的流量、水泵的三相電壓和電流準確值。把處理運算的結果通過以太網傳到監(jiān)控中心進行存儲、顯示和打印,同時監(jiān)控中心根據傳上來的結果進行判斷,然后根據判斷的情況確定是否需要給監(jiān)控終端發(fā)送控制命令。 電機保護算法設計方面,主要針對系統(tǒng)數據采集的特點,對相電流、相電壓進行交流信號采樣。對采樣后的數據運用快速傅立葉變換(FFT)進行數值計算,獲得了高精度的測量。 系統(tǒng)通訊網絡的設計主要針對系統(tǒng)兩層通訊網絡的協(xié)議進行分析與設計。監(jiān)控中心軟件采用基于Basic的可視化的程序設計語言Visual Basic6.0進行開發(fā)。客戶端利用計算機網絡技術,使用B/S模式遠程實現對系統(tǒng)運行數據的傳輸,以便可以查詢實時數據和歷史數據,實現資源共享。
標簽: ARM 煤礦井下 水泵電機 網絡監(jiān)控系統(tǒng)
上傳時間: 2013-06-25
上傳用戶:q123321