目前,油田的開采都是通過抽油機抽取地下的石油,因此國內油田對抽油機的需求量非常大。然而,據統計在油田生產成本中約有三分之一為電能消耗,其中抽油機消耗的電能約占總電能消耗的80%。驅動電動機是抽油機消耗電能的主要設備,年耗電量超過百億KWh。所以對抽油機的機械系統和電氣控制系統進行節能改造,最大限度地挖掘抽油機的節電潛力,可帶來相當可觀的經濟效益。 采用超高轉差電機作為抽油機的驅動電機,是現有改進抽油機系統的主要措施之一。這種電動機的特點是轉子電阻較大,起動轉矩得到有效提高,安裝容量得以降低;機械特性軟,遇到換相沖擊載荷時,轉速下降,靠曲柄慣性作用,減速器和電動機的扭矩變化趨于平緩,峰值扭矩明顯降低,從而改善了機、桿、泵的配合,提高了泵的充滿系數,增加產液量,達到系統節能的目的。此外,抽油機的工作過程中,驅動電機有時會處于發電狀態,對供電網的電能質量造成很大危害。超高轉差率電機能夠有效避免發電狀態的出現,從而減小對供電網的沖擊,保證供電質量。 本課題以抽油機節能改造中驅動電機節能為出發點,從超高轉差率電動機的機械特性、起動轉矩等方面,對該類型電動機驅動抽油機的優勢進行了理論分析。此外,本文還從能量平衡的角度,以抽油機中的動能平衡理論為基礎分析了電機轉差率對抽油機節能的影響。 最后,本文結合抽油機運動分析和抽油機曲柄運動曲線,以抽油機載荷系數為目標函數,編寫了優化計算程序,從而實現了對適合某一井況下抽油機的驅動電機的最優轉差率的定量計算,并以此作為設計或者選配超高轉差率電動機的依據。
上傳時間: 2013-07-07
上傳用戶:greethzhang
在伺服系統中,為了實現高精度的控制,往往需要實時地檢測出電動機轉子的位置。用來檢測電動機轉子位置的角度傳感器主要有光電編碼器和旋轉變壓器。光電編碼器雖然能夠達到很高的精度,但是它的抗干擾性差,不宜應用在條件惡劣的場合中;相比較而言,旋轉變壓器(簡稱旋變)由于結構簡單,堅固耐用,抗干擾性強,能夠應用在各種條件惡劣的場合中,所以獲得了越來越廣泛的應用。 本文采用的旋變樣機是一種新型的磁阻式旋轉變壓器。分析了它的定轉子結構、定子繞組的連接方式以及轉子形狀的優化;并在此基礎上,推導出了它的正余弦輸出反電勢的表達式;最后在電磁場分析軟件Ansoft中,以樣機為原型建立了仿真模型,分析了它內部的電磁場分布以及正余弦輸出反電勢的波形。 其次,本文設計了一種以DSP為核心的R2D電路系統。它以振蕩電路產生的正弦波電壓信號作為旋變的激勵信號,加上相關的外圍電路,構成了旋轉變壓器一數字轉換器,解算出了旋變的軸角θ;并在此基礎上,分析了產生角度解算誤差的各種因素,同時計算出了旋變的轉速n。 最后,在上述解算方案的基礎上,本文又給出了第二種解算方案,即:DSP產生的方波經過濾波之后作為旋變的激勵信號,解算出了旋變的軸角θ;然后比較了這兩種解算方案的優缺點,重點分析了激勵信號中的諧波分量對正余弦輸出反電勢以及角度解算的影響。
上傳時間: 2013-04-24
上傳用戶:pioneer_lvbo
目前離心機的變頻控制,采用的多是通用變頻器,沒有自主開發的離心機專用的交流調速控制器。同時,在控制方法上采用的主要還是V/F控制以及矢量控制,而效率更高,性能更好的直接轉矩控制方法則還沒有得到廣泛的應用。直接轉矩控制技術,用空間矢量的分析方法,直接在定子坐標系下計算與控制交流電動機的轉矩,采用定子磁場定向,借助于離散的兩點式調節(Bang-Bang控制)產生PWM信號,直接對逆變器的開關狀態進行最佳控制,獲得轉矩的高動態性能。直接轉矩控制,控制結構簡單、控制手段直接、信號處理的物理概念明確、轉矩響應迅速,限制在一拍內,是一種具有高動態響應的交流調速系統。本文通過對直接轉矩控制系統原理的分析、軟硬件的設計制作、系統的調試試驗,得到以下結論: ⑴直接轉矩控制系統,控制手段直接、信號處理的物理概念明確、轉矩動態響應迅速; ⑵直接轉矩控制系統中,低速階段轉矩脈動明顯,通過采用異步電動機適應全速的U-I模型,以及扇區細化等,可以有效減小轉矩脈動;由于轉矩和磁鏈采用離散的兩點式調節,即使在高速運行階段轉矩也有輕微的脈動,通過細分磁鏈扇區,采用空間矢量脈寬調制技術可以有效減小脈動,提高系統控制性能; ⑶直接轉矩控制系統中,檢測環節及其重要,特別是電壓、電流的檢測。無論采用哪種電機模型,電壓和電流都是最主要的參數,準確的電壓、電流檢測能夠增加電機模型的正確性,為控制提供基本的保障; ⑷直接轉矩控制系統中,對電機參數的要求簡單,只需要知道電動機定子電阻,因此直接轉矩控制系統的魯棒性強,易于移植。
上傳時間: 2013-04-24
上傳用戶:weddps
直接轉矩控制技術(DTC)是繼矢量控制技術之后交流調速領域中新興的控制技術,它采用空間矢量分析的方法,直接在定子坐標系下計算并控制異步電機的轉矩和磁鏈,采用定子磁場定向,直接對逆變器的開關狀態進行最佳控制,從而能夠快速而準確地控制異步電動機的轉矩和磁鏈,以獲得轉矩的高動態性能。目前在高速離心機行業,普遍采用通用型變頻器,其通用性好,但參數較多,價格較貴,為了降低成本增強控制性能,本文利用直接轉矩控制技術的優點,采用直接轉矩控制策略設計并制作了針對高速離心機的專用變頻器。 本文介紹了異步電動機和逆變器的基本數學模型,分析了異步電機直接轉矩控制的基本原理,以及直接轉矩控制系統的基本組成,對直接轉矩控制系統進行了仿真研究,建立了基于MATLAB/Simulink的仿真系統,介紹了仿真模型的各組成部分,包括3/2變換、定子磁鏈、電機轉矩觀測模型、轉矩調節器、磁鏈調節器、扇區判斷、開關表選擇等,給出了系統加減負載和加減轉速仿真結果,仿真結果表明了其磁鏈軌跡近似為圓形,系統具有良好的動態和穩態性能,同時證明了建立的轉矩和磁鏈觀測模型以及控制算法的正確性和可行性。根據仿真實現方法以及結果的指導,設計并制作了整個系統的硬件電路,包括主電路(單相整流、濾波、制動電路、啟動限流電路、逆變電路)、控制電路(DSP、驅動隔離放大、采樣)并對各器件進行選型,給出了硬件各部分電路圖;最后介紹了系統的軟件流程以及各模塊的程序實現,系統的軟件部分采用C語言進行編程,實現了定子相電流的采樣、定子相電壓的計算、定子磁鏈的計算和開關信號的輸出等功能。在分別對硬件和軟件各部分進行調試后,進行了系統的聯合調試,以TMS320F2808作為控制器,在一臺功率為1.5KW的交流異步電機上實現了直接轉矩控制。
上傳時間: 2013-05-31
上傳用戶:y307115118
地鐵列車牽引轉矩控制是影響列車安全可靠運行的重要因素,牽引變流模塊是整個列車交流傳動系統的核心設備,而牽引轉矩控制又是最關鍵的部分。本文以某城市國產化地鐵列車為研究對象,主要針對牽引轉矩控制方案進行研究并通過設計列車通信網絡對牽引轉矩實施監測。 論文首先介紹地鐵列車牽引轉矩控制的研究現狀,分析目前高性能交流調速方法在地鐵列車牽引轉矩控制中的應用現狀。并簡要介紹了網絡監測技術的研究現狀和CANopen總線協議在軌道交通車輛中的國內外應用現狀。 采用可編程邏輯控制器PLC及其子模塊構建了通信網絡的硬件結構,并設計了通信網絡軟件。對CANopen的通信報文進行了具體設計,實現了應用層協議CANopen的功能。 根據實際運行的需求,對牽引電機轉矩控制、牽引逆變器的PWM控制方式進行了研究。采用帶轉矩內環的轉速、磁鏈閉環矢量控制方法,應用帶定時調制環節的滯環電流比較PWM和優化脈沖控制方案分段對逆變器進行PWM控制。通過設計牽引系統與CANopen網絡的數據接口,實現了通信網絡對牽引控制效果的監測,并對牽引特性曲線進行分析;選取特性曲線上的特定工作點,對牽引控制效果進行了分析說明。測試結果表明本文討論的牽引矢量控制和PWM控制方案能夠很好地滿足列車運營對牽引轉矩的要求。 目前,該系統正在進行線路運行調試和性能改進,準備交付用戶進行商業線路運營,具有很好的工程應用價值。
上傳時間: 2013-08-02
上傳用戶:LYNX
近年來,隨著集成電路技術和電源管理技術的發展,低壓差線性穩壓器(LDO)受到了普遍的關注,被廣泛應用于便攜式電子產品如PDA、MP3播放器、數碼相機、無線電話與通信設備、醫療設備和測試儀器等中,但國內研究起步晚,市場大部分被國外產品占有,因此,開展本課題的研究具有特別重要的意義。 首先,簡單闡述了課題研究的背景及意義,分析了低壓差線性穩壓器(LDO)研究的現狀和發展趨勢,并提出了設計的預期技術指標。 其次,詳細分析了LDO線性穩壓器的理論基礎,包括其結構、各功能模塊的作用、系統工作原理、性能指標定義及設計時對性能指標之間相互矛盾的折衷考慮。 再次,設計了基于自偏置電流源的帶隙基準電壓源,選取PMOS管作為系統的調整元件并計算出了其尺寸,設計了基于CMOS工藝的兩級誤差運算放大器。利用HSPICE工具仿真了基準電壓源和誤差運算放大器的相關性能參數。 然后,重點分析了穩壓器的穩定性特征,指出系統存在的潛在不穩定性,詳細論述了穩定性補償的必要性,比較了業界使用過的幾種穩定性補償方法的不足之處,提出了一種基于電容反饋VCCS的補償方法,對系統進行了穩定性的補償; 最后,將所設計的模塊進行聯合,設計了一款基于CMOS工藝的LDO線性穩壓器電路,利用HSPICE工具驗證了其壓差電壓、靜態電流、線性調整率等性能指標,仿真結果驗證了理論分析的正確性、設計方法的可行性。
上傳時間: 2013-07-08
上傳用戶:Wibbly
本文介紹了埋弧焊的特點、發展過程、國內外的研究現狀;分析了軟開關逆變式主回路的優點、模擬電路控制系統和數字化控制系統的優缺點,指出數字化控制是逆變埋弧焊機控制的發展方向;對埋弧焊接工作原理和埋弧焊機控制系統進行分析,介紹了交流方波埋弧焊的優點;論述了變動送絲電弧控制系統的原理及影響因素,并且分析了變動送絲情況下焊接電弧的穩定性,為逆變式交流方波埋弧焊系統的設計提供了理論依據。 在分析傳統交流方波埋弧焊主回路的基礎上設計了主回路結構,對主回路中一次、二次逆變回路的軟開關工作方式進行分析并做了簡單仿真。IGBT是逆變電源的核心部件,文中論述了IGBT功率器件的選型和各種保護措施以保證系統的可靠工作。焊機工作發熱量很大,本文介紹了整機和關鍵器件的熱設計。 數字化控制方式是逆變埋弧焊機控制的發展方向,本文采用“MCU+DSP”的控制結構,對埋弧焊的整個焊接過程進行精確控制。文中詳細介紹了主控制板的設計思路和電源、電流與電壓反饋、控制芯片最小系統、通信與保護工作電路。焊機的工作中,各種干擾不可避免,對各種可能干擾分析的基礎上在硬件電路設計和PCB板的制作中采取了相應的抗干擾措施。軟件設計是焊接穩定進行的關鍵因素,文中介紹了控制系統中關鍵步驟的軟件設計思路和流程并在軟件的實現中采用抗干擾措施。 最后,對采用本控制系統的埋弧焊機進行初步實驗,結果表明本文所設計的埋弧焊機控制系統能夠滿足逆變埋弧自動焊的要求,具有電路簡單,控制精度高,抗干擾能力強、操作方便、工作穩定可靠等優點,提高了焊機的綜合性能及自動化程度。 本課題所設計的逆變式交流方波埋弧焊電源具有良好的輸出特性和控制性能,可滿足埋弧自動焊和手工焊的要求。采用交流方波的焊接波形、對焊接整個過程進行實時軟件控制,電弧穩定,焊接效果好。 關鍵詞:埋弧焊;交流方波;逆變;軟開關
上傳時間: 2013-06-08
上傳用戶:mingaili888
直接轉矩控制技術是繼矢量控制技術之后交流調速領域中新興的控制技術,它采用空間矢量的分析方法,在定子坐標系下計算并控制轉矩和磁鏈,以獲得轉矩的高動態性能。比較于矢量控制,它省去了復雜的矢量變換,克服了對電機轉子參數的依賴性,具有轉矩響應快的優點。然而,異步電動機的直接轉矩控制系統存在轉矩、電流和磁鏈脈動較大,開關頻率不恒定的問題。本文在傳統直接轉矩控制的基礎上,針對其存在的缺點提出了基于空間矢量脈寬調制的直接轉矩控制策略。 這種新型的直接轉矩控制策略使空間矢量脈寬調制技術和直接轉矩控制技術相結合。把電動機和PWM逆變器看成一體,使電動機獲得賦值恒定的近似理想的圓形磁場,解決其轉矩、電流、磁鏈脈動大,開關頻率不恒定的問題。在論文撰寫的過程中做了如下工作: 根據電機原理和坐標變換理論,建立定子正交α—β兩相靜止坐標系下的異步電動機的數學模型,包括電機的磁鏈模型、轉矩模型和運動方程。 設計PI控制器,該控制器把轉矩和磁鏈誤差信號轉換成參考電壓,然后通過坐標變換把參考電壓變換成SVPWM模塊所需的指令電壓,對SVPWM模塊進行控制。 設計SVPWM控制模塊,其中設計了期望電壓空間矢量的合成方法,矢量區段的判斷,計算了開關器件的導通時間和時刻。 通過理論分析和設計各個模塊,組成了控制系統逆變器部分的仿真模型。在MATLAB/SIMULINK仿真工具箱中搭建仿真模型,通過設置合理的仿真參數、電機參數、給定量參數以及PI控制器的控制參數對系統進行仿真研究,從而在理論上驗證系統設計的正確性。 仿真實驗結果證明了這種基于空間矢量脈寬調制的直接轉矩控制方法可以有效改善直接轉矩控制系統的性能。減小傳統直接轉矩控制中的磁鏈和轉矩脈動,并使逆變器工作在恒定的開關頻率。最后總結論文所做的研究工作,并展望了今后的研究重點和方向。
上傳時間: 2013-04-24
上傳用戶:dancnc
隨著電力電子技術的發展,各類電力電子裝置應運而生,這些產品在出廠前需要根據不同的需要進行相應的測試和校驗。傳統的負載測試存在著能耗大、靈活性差等諸多缺點,已經越來越不能滿足各種測試場合的要求,特別是一些要求用動態變化的負載、非線性負載、具有負阻特性的負載以及有源負載等測試場合。因此針對這一問題,本文利用電力電子技術結合計算機技術、控制技術等設計了一種通用的交流電子負載模擬裝置,以滿足各種測試場合的要求。 @@ 交流電子負載是一種可以模擬真實負載的電力電子裝置,它不但可以模擬傳統的線性負載,也可以模擬各種非線性負載、有源負載等其他形式的負載。目前國內外對電子負載的研究還不成熟,有些是使交流電源按照一定的功率放電,但是輸出電流卻與真實負載測試下的電流有較大的差別;而有些雖然能夠準確控制電源的放電電流取得和真實負載一樣的效果,但試驗電能完全被消耗掉,造成很大的浪費。本文研究的新型交流電子負載克服了以上電子負載方案的缺點,可以滿足各種試驗場合的測試需求,能夠在很大程度上減少能量浪費,豐富試驗樣式且節約試驗成本。 @@ 本文分析了能饋式交流電子負載的模擬原理,確定了采用中間直流環節的交-直-交主電路結構,其一端接待測交流電源,另一端接低壓交流電網。前級負載模擬環節和后級能量回饋環節均采用可四象限運行的電壓型PWM(Pulse Width Modulation)變換器。負載模擬環節直接與待測電源連接,采用電流滯環瞬時值比較方式,使電源輸出的實際電流信號準確、快速的跟蹤其指令電流信號值,使得電子負載對待測電源呈現設定的負載形式,完成電子負載的模擬功能;能量回饋環節與電網連接,通過控制輸出電流與電網電壓同頻、同相位,實現試驗電能的單位功率因數回饋電網的目的,變換器的控制采用常規的雙閉環控制方式,電流內環控制實際電流跟蹤指令值的變化,電壓外環通過控制輸出電流的大小使直流側母線電壓穩定為設定指令值。 @@ 電子負載系統在負載模擬部分通過人機接口設定具體負載形式和負載屬性,為了更加準確快速的得到電流指令信號值,文中采用更加直接的數值計算方 法,由數字信號處理器實時計算出該給定負載模式下的指令電流值。使用交流小信號分析法得到了系統的頻域方塊圖,并對主電路元件參數以及調節器進行了優化設計。針對大功率開關管開關頻率存在的限制,本文提出了幾種提高電流跟蹤精度的改進方法,取得了良好的效果。整個系統在PSIM平臺上進行了不同工作模式下的仿真,仿真結果表明方案切實可行。最后依據仿真方案設計基于TMS320F2812的控制系統和功率電路,使用PROTEL軟件進行了原理圖的繪制。@@關鍵詞:電子負載;能量回饋;電壓型變換器;滯環PWM電流控制;雙閉環;PWM整流器
上傳時間: 2013-05-26
上傳用戶:saharawalker
傳統開環運行的三相混合式步進電動機驅動系統中存在著振蕩和失步等不足之處。本文針對這種情況,通過對理想化三相混合式步進電動機數學模型的分析,把三相混合式步進電動機視為一種低速同步電動機。同時,結合電流跟蹤型PWM控制方式及恒流斬波驅動的工作原理,設計了基于數字信號處理器TMS320F2812的全數字三相混合式步進電動機正弦波細分驅動系統。 首先,本文從三相混合式步進電動機的數學模型出發,對步進電動機的細分驅動方式進行了研究,分析了步進電動機連續均勻旋轉的工作機理。然后分析了步進電動機的運行特性及細分控制的必要性,進而分析了細分驅動對改善步進電動機運行性能的作用,并針對細分運行的一些不足之處,提出了均勻細分恒轉矩控制的方案。理論分析表明,在混合式步進電動機的三相定子繞組中通以互差120°的正弦波電流時,可得到類似同步機的轉矩特性,使電動機均勻旋轉。 本系統硬件電路以TMS320F2812為核心,采用正弦波細分和電流跟蹤型脈寬調制(PWM)技術實現三相混合式步進電動機的細分控制,使三相定子繞組電流嚴格跟蹤電流給定信號變化。應用IR公司的IR2130集成驅動芯片進行了步進電動機驅動系統的功率驅動環節的設計,節省了板上空間,減小了裝置體積。同時從裝置可靠性出發,設計了一套安全可靠的硬件保護電路。 實驗結果表明,本文所設計的三相混合式步進電動機正弦波細分驅動器具有優良的控制性能。細分運行時減弱了混合式步進電動機的低速振動和噪聲,使電動機運行平穩,并改善了其低頻運行性能。
上傳時間: 2013-06-27
上傳用戶:ca05991270