本文主要研究一種隔離器高速數據通信卡設計,并對基于PCI總線的內外網數據通訊和交換的硬件編程實現進行詳細的說明,最后在pc機windows平臺下對數據通信卡進行吞吐量和穩定性的測試。 首先介紹了網絡安全的現狀以及物理網絡隔離的原理和重要性,并敘述了網絡隔離產品的發展,接著介紹網絡隔離系統,并提出硬件平臺的總體設計方案:重點敘述了網閘內外網通訊的硬件核心數據通信卡設計思路和數據的流程,以及基于FPGA的PCI接口外部邏輯設計,并對該數據通訊卡在windows平臺雙機之間通訊作了測試,并對測試結果作了分析。
上傳時間: 2013-07-30
上傳用戶:muyehuli
本文應用EDA技術,基于FPGA器件設計與實現UART,并采用CRC校驗。主要工作如下: 1、在異步串行通信電路部分完全用FPGA來實現。選用Xilinx公司的SpartanⅢ系列的XC3S1000來實現異步串行通信的接收、發送和接口控制功能,利用FPGA集成度比較高,具有在線可編程能力,在其完成各種功能的同時,完全可以將串行通信接口構建其中,可根據實際需求分配資源。 2、利用VerilogHDL語言非常容易掌握,功能比VHDL更強大的特點,可以在設計時不斷修改程序,來適用不同規模的應用,而且采用Verilog輸入法與工藝性無關,利用系統設計時對芯片的要求,施加不同的約束條件,即可設計出實際電路。 3、利用ModelSim仿真工具對程序進行功能仿真和時序仿真,以驗證設計是否能獲得所期望的功能,確定設計程序配置到邏輯芯片之后是否可以運行,以及程序在目標器件中的時序關系。 4、為保證數據傳輸的正確性,采用循環冗余校驗CRC(CyclicRedundancyCheck),該編碼簡單,誤判概率低,為了減少硬件成本,降低硬件設計的復雜度,本設計通過CRC算法軟件實現。 實驗結果表明,基于EDA技術的現場可編程門陣列FPGA集成度高,結構靈活,設計方法多樣,開發周期短,調試方便,修改容易,采用FPGA較好地實現了串行數據的通信功能,并對數據作了一定的處理,本設計中為CRC校驗。另外,可以利用FPGA的在線可編程特性,對本設計電路進行功能擴展,以滿足更高的要求。
上傳時間: 2013-04-24
上傳用戶:Altman
隨著計算機科學和視頻技術的廣泛發展,數字圖像采集在電子通信與信息處理領域得到了廣泛的應用,例如廣播電視的數字化、網絡視頻、監視監控系統等. 視頻圖像采集卡作為計算機視頻應用的前端設備,承擔著模擬視頻信號向數字視頻信號轉換的任務,在多媒體時代占據著重要的位置.設計一種功能靈活,使用方便,便于嵌入到系統中的視頻信號采集電路具有重要的實用意義. 本文首先介紹數字圖像采集系統的發展現狀和前景,提出了本次設計的目標: 完成基于PCI總線的高分辨率圖像采集卡設計.然后簡單介紹了本次設計用到的基本理論:數據采集理論,特別說明了采樣和量化的定義與區別,以及量化的幾種方式和量化與AD技術之間的關系. 圖像采集系統的基本構成,是以數字信號處理器為核心,控制外圍的A/D、D/A轉換器和外圍存儲器.本文對比了當下流行的DSP芯片和IFPGA芯片作為數字處理核心的優缺點,并根據系統實際需要,選用FPGA作為數字信號處理器.然后列舉了幾款常用A/D視頻芯片,還介紹了SDRAM控制的基本流程,最后提出了系統的整體設計方案. 圖像采集卡的硬件設計分為A/D前端模擬通道設計和FPGA數字信號傳輸及外圍電路設計.本文重點介紹了A/D芯片外圍電路連接和使用方法,對PCI總線和它的控制電路也做了詳細闡述.對圖像采集卡的PCB布局布線也有詳細說明. 圖像采集卡FPGA內部程序構成也是本文的一個重點.本次的程序設計主要分為數據采集模塊,即與A/D接口模塊,數據暫存模塊,即SDRAM讀寫控制模塊,數據處理模塊和數據傳輸模塊,即PCI控制模塊.重點在于對的SDRAM的連續讀寫控制和各個模塊間的協調工作.說明了.A/D采集數據從接收到存儲詳細過程,以及對SDRAM讀寫狀態機和PCI總線的操控. 最后介紹了硬件調試和FPGA程序驗證結果.詳細說明了以Modelsim為平臺的前端功能仿真和后端時序仿真,以及以SignalTapⅡ為平臺,程序下載到FPGA中進行的實時驗證.結果表明整個圖像采集系統基本達到了系統設計中所給出的性能指標,證明了整個系統設計的正確性和合理性.
上傳時間: 2013-04-24
上傳用戶:amandacool
隨著微電子技術和計算機技術的迅猛發展,尤其是現場可編程器件的出現,為滿足實時處理系統的要求,誕生了一種新穎靈活的技術——可重構技術。它采用實時電路重構技術,在運行時根據需要,動態改變系統的電路結構,從而使系統既有硬件優化所能達到的高速度和高效率,又能像軟件那樣靈活可變,易于升級,從而形成可重構系統。可重構系統的關鍵在于電路結構可以動態改變,這就需要有合適的可編程邏輯器件作為系統的核心部件來實現這一功能。 論文利用可重構技術和“FD-ARM7TDMLCSOC”實驗板的可編程資源實現了一個8位微程序控制的“實驗CPU”,將“實驗CPU”與實驗板上的ARMCPU構成雙內核CPU系統,并對雙內核CPU系統的工作方式和體系結構進行了初步研究。 首先,文章研究了8位微程序控制CPU的開發實現。通過設計實驗CPU的系統邏輯圖,來確定該CPU的指令系統,并給出指令的執行流程以及指令編碼。“實驗CPU”采用的是微程序控制器的方式來進行控制,因此進行了微程序控制器的設計,即微指令編碼的設計和微程序編碼的設計。為利用可編程資源實現該“實驗CPU”,需對“實驗CPU”進行VHDL描述。 其次,文章進行了“實驗CPU”綜合下載與開發。文章中使用“Synplicity733”作為綜合工具和“Fastchip3.0”作為開發工具。將“實驗CPU”的VHDL描述進行綜合以及下載,與實驗箱上的ARMCPU構成雙內核CPU,實現了基于可重構技術的雙內核CPU的系統。根據實驗板的具體環境,文章對雙內核CPU系統存在的關鍵問題,如“實驗CPU”的內存讀寫問題、微程序控制器的實現,以及“實驗CPU'’框架等進行了改進,并通過在開發工具中添加控制模塊和驅動程序來實現系統工作方式的控制。 最后,文章對雙核CPU系統進行了功能分析。經分析,該系統中兩個CPU內核均可正常運行指令、執行任務。利用實驗板上的ARMCPU監視用“實驗CPU”的工作情況,如模擬“實驗CPU”的內存,實現機器碼運行,通過串行口發送的指令來完成單步運行、連續運行、停止、“實驗CPU"指令文件傳送、“實驗CPU"內存修改、內存察看等工作,所有結果可顯示在超級終端上。該系統通過利用ARMCPU來監控可重構CPU,研究雙核CPU之間的通信,嘗試新的體系結構。
上傳時間: 2013-04-24
上傳用戶:royzhangsz
軟件無線電已成為無線通信非常關鍵的技術之一。其基本思想是將寬帶A/D、D/A盡可能靠近天線,在一個開放式、模塊化的通用硬件平臺上用盡可能多的軟件來實現無線電臺的各種功能。 本文所討論的多相濾波器組信道化接收機(PPCR)及信道非均勻劃分,即是應用了軟件無線電理念的一種新技術。該技術針對傳統無線電接收機存在的結構不靈活、系統升級困難、同時處理多信號能力弱及系統規模過大等問題,應用現代多速率信號處理理論對之進行了改進。改進后的軟件無線電PPCR.具有全概率接收能力,能對信號進行下變頻并降低其采樣率處理,實現后資源耗費較低,而且依托現場可編程門陣列(FPGA)建立的平臺是開放式的,在需要時可在不改變硬件系統的情況下通過軟件更改系統的功能,極大地提高了系統的靈活性。諸多的優點使其具有十分廣泛的應用前景,也成為當前研究熱點之一。 本文首先介紹了課題的應用背景,并深入討論了軟件無線電的基本理論:信號采樣理論及多速率信號處理理論,介紹了應用PPCR的采樣處理過程,給出了推導PPCR的數學模型,并在此基礎上分析闡述了信道非均勻劃分的原理。 在本文的系統仿真及實現部分,首先介紹了應用現代DSP開發工具DSPBuilder進行開發的設計流程,然后對應用DSP Builder來設計PPCR中的主要模塊一多相濾波器組及快速傅立葉變換模塊做了詳細闡述,最后對系統仿真及實現過程的實驗結果圖進行了分析。 本文主要是在實驗室階段對算法在硬件實現上進行研究。成果可以作為后續應用研究的基礎,對各種應用軟件無線電理念的通信系統都具有一定的參考價值。
上傳時間: 2013-06-17
上傳用戶:xfbs821
LabVIEW串口通信程序設計LabVIEW串口通信程序設計LabVIEW串口通信程序設計LabVIEW串口通信程序設計
上傳時間: 2013-05-21
上傳用戶:奈雁歸dxh
研制發射微小衛星,是我國利用空間技術服務經濟建設、造福人類的重要途徑。現代微小衛星在短短20年里能取得長足的發展,主要取決于微小衛星自身的一系列特點:重量輕,體積小,成本低,性能高,安全可靠,發射方便、快捷靈活等。在衛星通信系統中,由于傳輸信道的多徑和各種噪聲的影響,信號在接收端會引起差錯,通過信道編碼環節,可對這些不可避免的差錯進行檢測和糾正。 在微小衛星通信鏈路中,信道編碼器的任務是差錯控制。本文采用符合空間數據系統咨詢委員會CCSDS標準的鏈接碼進行信道編碼,即內碼為(2,1,6)的卷積碼,外碼為(255,223)的RS碼,中間進行交織操作。其中,里德-索羅蒙碼(簡稱RS碼)是一種重要的非二進制BCH碼,是分組碼中糾錯能力最強的糾錯碼,一次可以糾正多個突發錯誤,廣泛地用于空間通信中。 本文針對南京航空航天大學自行研制的微小衛星通信分系統的技術要求,在用SystemView和C語言仿真的基礎上,用硬件描述語言Verilog設計了RS(255,223)編碼器和譯碼器,使用Modelsim軟件進行了功能仿真,并通過Xilinx公司的軟件ISE對設計進行綜合、布局布線,最后生成可下載的比特流文件下載到Xilinx公司的型號為XC3S2000的FPGA芯片中,完成了電路的設計并實現了編碼譯碼的功能,表明本文設計的信道編解碼器的正確性和實用性,滿足了微小衛星通信分系統的技術要求。
上傳時間: 2013-08-01
上傳用戶:lili123
碼元定時恢復(位同步)技術是數字通信中的關鍵技術。位同步信號本身的抖動、錯位會直接降低通信設備的抗干擾性能,使誤碼率上升,甚至會使傳輸遭到完全破壞。尤其對于突發傳輸系統,快速、精確的定時同步算法是近年來研究的一個焦點。本文就是以Inmarsat GES/AES數據接收系統為背景,研究了突發通信傳輸模式下的全數字接收機中位同步方法,并予以實現。 本文系統地論述了位同步原理,在此基礎上著重研究了位同步的系統結構、碼元定時恢復算法以及衡量系統性能的各項指標,為后續工作奠定了基礎。 首先根據衛星系統突發信道傳輸的特點分析了傳統位同步方法在突發系統中的不足,接下來對Inmarsat系統的短突發R信道和長突發T信道的調制方式和幀結構做了細致的分析,并在Agilent ADS中進行了仿真。 在此基礎上提出了一種充分利用報頭前導比特信息的,由滑動平均、閾值判斷和累加求極值組成的快速報頭時鐘捕獲方法,此方法可快速精準地完成短突發形式下的位同步,并在FPGA上予以實現,效果良好。 在長突發形式下的報頭時鐘捕獲后還需要對后續數據進行位同步跟蹤,在跟蹤過程中本論文首先用DSP Builder實現了插值環路的位同步算法,進行了Matlab仿真和FPGA實現。并在插值環路的基礎上做出改進,提出了一種新的高效的基于移位算法的位同步方案并予以FPGA實現。最后將移位算法與插值算法進行了性能比較,證明該算法更適合于本項目中Inmarsat的長突發信道位同步跟蹤。 論文對兩個突發信道的位同步系統進行了理論研究、算法設計以及硬件實現的全過程,滿足系統要求。
上傳時間: 2013-04-24
上傳用戶:zukfu
stm8 spi使用說明,講述stm8系列單片機的SPI通信配置及操作流程-stm8 spi instructions for use, about stm8 MCU SPI communication configuration and operational procedures
上傳時間: 2013-07-16
上傳用戶:面具愛人丿
軟件無線電技術作為一種新的通信技術,其基本思想是構造一個通用硬件平臺,使寬帶A/D,D/A盡量靠近天線,在數字域完成信號處理,通過選用不同軟件模塊即可實現不同的通信功能,這樣大大縮短了電臺的研發周期。該技術在通信(尤其是在移動通信)領域有著迫切的需求和廣闊的應用前景。 本文闡述了軟件無線電的基礎理論,對信號采樣理論、多速率信號處理技術、高效數字濾波器、數字正交變換理論進行了分析和研究。從目前器件發展水平和實驗研究條件出發,設計了一個基于FPGA的軟件無線電通信平臺。設計采用了中頻數字化處理的硬件平臺結構,選用Altera Cyclone系列FPGA作為信號處理和總體控制配置的核心,并結合專用通信芯片,數字上變頻器AD9856和數字下變頻器AD6654來實現該平臺。采用VHDL和Verilog HDL語言對時分復用模塊、信道編解碼模塊、調制解調模塊等進行了模塊化設計,并對電路板設計過程中系統的配置和控制、無源濾波器設計、阻抗匹配電路設計等問題進行了詳細的討論,最后對印制電路板進行測試和調試,獲得了預期的效果。 本文給出的設計方案,大大簡化了數字通信系統的硬件設備,具有較強的通用性和靈活性,通過修改系統參數和配置程序,即可適應不同的通信模式和信道狀況,充分體現了軟件無線電的優勢。該平臺不僅僅能應用在通信設備上,在許多系統驗證平臺、測試設備中均可應用,頗具實用價值。
上傳時間: 2013-07-21
上傳用戶:淺言微笑