隨著新理論、新器件、新技術(shù)的不斷出現(xiàn)或成熟,功率超聲技術(shù)在國民經(jīng)濟各個部門中日益廣泛應(yīng)用。超聲波電源為超聲波換能器提供電能,超聲波換能器將電能轉(zhuǎn)換為動能,完成超聲波清洗、防垢除垢等功能。本文主要對高頻超聲波電源進行了理論分析與設(shè)計。 首先對超聲波電源基本拓撲結(jié)構(gòu)進行了分析,提出了超聲波電源功放電路可以采用的三種方案:半橋功率放大電路、全橋功率放大電路、推挽功率放大電路。通過對比分析了各種方案的優(yōu)點和缺點,確定了超聲波電源功率放大電路的方案。針對超聲波電源的具體要求,設(shè)計了整流濾波電路,功率放大電路、驅(qū)動電路、緩沖電路、功率反饋電路、保護電路。其中,給出了整流濾波電路和功率放大電路的參數(shù)計算。 其次對超聲波換能器的特性進行了分析,介紹了超聲波換能器的串聯(lián)諧振頻率和并聯(lián)諧振頻率。然后對幾種常用的匹配網(wǎng)絡(luò)進行了分析,包括單個電感的匹配、電感-電容匹配、改進的電感-電容匹配,分析了其優(yōu)點和缺點。 然后由于超聲波電源需具有性能高、功率大、成本低的特點,要求能較好適應(yīng)超聲波換能器阻抗變化、頻率漂移等所帶來的疑難問題。本文介紹了超聲波電源幾種常見的頻率跟蹤方案。本文研究的是一種傳統(tǒng)的自激式超聲波電源,串聯(lián)諧振頻率在20KHz左右,頻率跟蹤采用負載分壓式反饋系統(tǒng),在以前手動調(diào)節(jié)電感的基礎(chǔ)上,通過在反饋回路添加通過AVR單片機控制數(shù)字電感來跟蹤超聲波換能器的諧振頻率,易操作,能穩(wěn)定運行。 最后在理論設(shè)計的基礎(chǔ)上,對超聲波電源各個組成電路進行了實際制作,在超聲波電源與超聲波換能器匹配無誤、工作穩(wěn)定后,對有關(guān)電路進行了現(xiàn)場試驗驗證。實驗結(jié)果表明,該超聲波電源具有一定的使用價值。
上傳時間: 2022-06-08
上傳用戶:
摘要:為了得到輸出穩(wěn)定、開關(guān)耐壓力小并且功率因教高的大功率三相整流器,對三相VIENNA 型 PFC電路拓撲進行了研究,對VIENNA整流器的原理進行了調(diào)查,根據(jù)原有的控制理念,在其控制方面采用了區(qū)間控制結(jié)合滯環(huán)控制法來控制整個電路。在整個系統(tǒng)方案設(shè)計究畢后,搭建Malab模型對所設(shè)計的電路進行仿真,由仿真結(jié)果可以看到系統(tǒng)的輸出為穩(wěn)壓輸出,開關(guān)器件的耐壓力為輸出電壓的一半,輸入功率因數(shù)為1,并且做了一些小樣機對系統(tǒng)所采用的控制進行了驗證。關(guān)鍵詞:三相拓撲電路;區(qū)間控制法;功奉因教校正;滯環(huán)拉制1引言傳統(tǒng)的三相整流雖然可以滿足系統(tǒng)大功率的需求,但是存在諧波大、功率因數(shù)低等缺點。三相VIENNA型 PFC整流器,具有控制簡單、輸入功率因數(shù)高、無諧波污染等優(yōu)點,適合于三相大功率電路,便于工程應(yīng)用中的實現(xiàn)。文獻中采用滯環(huán)控制方法1-1,用反饋信號與正弦采樣信號組合,再應(yīng)用PWM技術(shù)實現(xiàn)PFC電路的穩(wěn)壓和電流的正弦化.電路電感電流連續(xù)CCM和臨界連續(xù)BCM模式下工作,簡化了電路,降低制造成本。針對所作系統(tǒng)進行仿真,驗證了系統(tǒng)的可行性和優(yōu)越性。2 VIENNA電路原理2.1原始主電路如圖1所示的電路三相三開關(guān)三電平整流電路2,開關(guān)采用4個二極管和一個全控型MOSFET管組成。根據(jù)電路的對稱性可以知道電容中點電位與電網(wǎng)中點的電位近似相同。當A相開關(guān)管關(guān)斷時,E點F點電位相等,Un-Ux則Ua=0.5Un-0.5Uc,又Un=Uc,又Ua-0.5Uc,因此Uw:=0,U-0.5Ux,即VIENNA電路中開關(guān)器件只承受了一半的輸出直流電壓,所以開關(guān)管電壓應(yīng)力小,非常適合于大功率三相PFC整流電路。
標簽: 三相PFC整流電路
上傳時間: 2022-06-16
上傳用戶:fliang
糖尿病被列為世界三大難癥之一,危害巨大。而隨著人們生活方式和生活環(huán)境的改變,糖尿病患者的數(shù)量還在不斷增多,且呈現(xiàn)年輕化的趨勢。由于影響糖尿病病情的因素很多,大部分患者需要進行血糖的自我監(jiān)控,以達到穩(wěn)定病情和促進治療的目的,而便攜式血糖儀因其使用便捷而受到廣大糖尿病患者的青睞。現(xiàn)有針對便攜式血糖儀的研究大多是針對技術(shù)層面的,極少有人關(guān)注它的軟性層面即其在人機交互性方面的發(fā)展。本文以人機交互理論為指導(dǎo),從尋找和研究目標用戶、發(fā)掘用戶的潛在交互需求出發(fā),系統(tǒng)分析和比較了現(xiàn)有便攜式血糖儀的使用過程和使用方式,從而了解了其在使用過程中的人機交互情況,并針對現(xiàn)有便攜式血糖儀的交互性進行了評估,總結(jié)了現(xiàn)有便攜式血糖儀在人機交互和人機界面設(shè)計方面的優(yōu)點和問題點,提出了針對便攜式血糖儀的交互式設(shè)計準則以及在設(shè)計上的改進意見,同時還展望了便攜式血糖儀在人機交互方面的發(fā)展趨勢。2.1便攜式血糖儀的分類血糖儀自1968年由湯姆·克萊曼斯發(fā)明至今,血糖儀經(jīng)歷了不同的技術(shù)發(fā)展階段,出現(xiàn)了采血便攜血糖儀、動態(tài)血糖儀、表式血糖儀等等不同原理的血糖儀,目前廣大糖尿病患者大部分購買的都是便攜式血糖儀。2.1.1按工作原理分類從工作原理上便攜式血糖儀分為兩種,一種是光電型,一種是電極型。光電血糖儀有一個光電頭,但探測頭暴露在空氣里,很容易受到污染,影響測試結(jié)果,使用壽命比較短,一般在兩年之內(nèi)是比較準確的,兩年后需要定期做校準;電極型的測試原理比較科學(xué),電極口內(nèi)藏,可以避免污染,并且測試的精讀比較高,正常使用的情況下,不需要校準,壽命長。2.1.2按測糖方式分類目前市場上常見的血糖儀按照測糖技術(shù)可以分為電化學(xué)法測試和光反射技術(shù)測試兩大類。前者是酶與葡萄糖反應(yīng)產(chǎn)生的電子再運用電流記數(shù)設(shè)施,讀取電子的數(shù)量,再轉(zhuǎn)化成葡萄糖濃度讀數(shù)。后者是通過酶與葡萄糖的反應(yīng)產(chǎn)生的中間物(帶顏色物質(zhì)),運用檢測器檢測試紙反射面的反射光的強度,將這些反射光的強度,轉(zhuǎn)化戲葡萄糖濃度
上傳時間: 2022-06-17
上傳用戶:zhanglei193
本文以觸摸屏的人機交互設(shè)計為與機制為課題背景,對不同觸摸設(shè)備的交互特征和用戶使用行為進行分析,包括手機(小尺寸觸摸設(shè)備)及平板(大尺寸觸摸設(shè)備),從而總結(jié)出觸摸設(shè)備的交互設(shè)計原則。通過實例總結(jié)手機為例的小尺寸屏幕的6種典型界面結(jié)構(gòu),平板為例的大尺寸觸屏設(shè)備的6種典型界面結(jié)構(gòu)。大部分的應(yīng)用界面都是以此為基礎(chǔ)展開設(shè)計。詳細介紹了各個框架的優(yōu)勢和劣勢,以及對應(yīng)的使用場景,適合的應(yīng)用類型。填補了觸摸屏界面結(jié)構(gòu)庫眼動研究的空白。并通過眼動實驗分析用戶進行觸屏操作時的眼動規(guī)律,經(jīng)過數(shù)據(jù)分析進一步探索界面結(jié)構(gòu)的應(yīng)用場景和交互操作特性,得出一套完整的界面結(jié)構(gòu)選擇規(guī)律。最后應(yīng)用前文的研究結(jié)論,通過實例設(shè)計一款未來的家庭廚房生活的概念產(chǎn)品。選擇與其匹配的界面結(jié)構(gòu),進行交互界面及流程設(shè)計。本文的研究結(jié)論對改善觸屏設(shè)備的交互設(shè)計是非常有意義的,符合科技發(fā)展趨勢且具有一定的應(yīng)用價值。隨著信息社會的發(fā)展,觸摸屏設(shè)備逐步進入人們的視線。越來越多的觸屏設(shè)備將投入市場并被用戶所使用,觸摸設(shè)備也將更多的影響和改變?nèi)藗兊纳罘绞健S|摸屏作為一種最新的電腦輸入設(shè)備,是目前最簡單、自然的一種人機交互方式。它賦予了多媒體以嶄新的面貌。觸摸屏的人機交互和個人電腦的交互方式有著天壤之別,個人電腦的輸入設(shè)備主要是由鍵盤和鼠標操作完成,點擊式交互是個人電腦上的主要交互方式;而觸摸屏則是以手指的手勢操作為主。手勢操作更直接、有效,但是由于手指觸擊屏幕的面積較大,相比鼠標更容易造成誤操作。同時,不同材質(zhì)的觸摸屏靈敏度也決定了手勢交互是否友好。研究表明,用戶用食指和拇指進行操作也是有區(qū)別的,拇指的觸及范圍相對食指會更大,觸擊準確率更低11。因此對觸摸屏進行針對性的設(shè)計研究,而不是直接將桌面設(shè)備的界面設(shè)計規(guī)則照搬過來是有一定實踐意義的。本文的研究以觸屏界面結(jié)構(gòu)為落腳點,設(shè)計的最終目的是提出一套觸屏界面結(jié)構(gòu)的選擇規(guī)范,為觸屏人機界面資源庫添加結(jié)構(gòu)庫的部分。讓產(chǎn)品有著更加良好的用戶體驗,有效方便的解決開發(fā)人員在設(shè)計一款新的應(yīng)用時不知選取怎樣的界面結(jié)構(gòu)問題,減少開發(fā)人員的重復(fù)工作量和不必要的創(chuàng)新和濫用,規(guī)范用戶界面結(jié)構(gòu)使產(chǎn)品在不同的觸摸設(shè)備上保持一致的交互體驗。這對于產(chǎn)品的最終用戶,體驗將起到很重要的作用。
上傳時間: 2022-06-18
上傳用戶:zhanglei193
本文以超音頻串聯(lián)諧振式感應(yīng)加熱電源為研究對象,應(yīng)用鎖相環(huán)和PID技術(shù),采用數(shù)字信號處理器(DSP)和復(fù)雜可編程邏輯器件(CPLD)聯(lián)合控制的數(shù)字化技術(shù)實現(xiàn)感應(yīng)加熱電源的頻率跟蹤和0~1800自由移相調(diào)功,為感應(yīng)加熱電源系統(tǒng)的數(shù)字化、信息化、柔性化、智能化控制提供了優(yōu)質(zhì)、可靠的技術(shù)基礎(chǔ)。論文首先介紹了感應(yīng)加熱的基本原理及感應(yīng)加熱技術(shù)的發(fā)展動態(tài)。然后通過對感應(yīng)加熱電源中的主電路拓撲進行分析,比較串聯(lián)譜振逆變電路與并聯(lián)諧振逆變電路的優(yōu)缺點,選擇了更適合超音頻感應(yīng)加熱電源的串聯(lián)語振主電路。在確定了設(shè)計方案后,詳細分析了電源的主電路結(jié)構(gòu)并進行了系統(tǒng)各組成部分器件的參數(shù)計算和選取。通過對鎖相環(huán)原理進行了分析,提出一種基于DSP的數(shù)字鎖相環(huán)(DPLL)的實現(xiàn)方法。論文在分析和對比了感應(yīng)加熱電源的各種調(diào)功方式后,選擇了移相調(diào)功對感應(yīng)加熱電源進行恒流調(diào)節(jié)。通過兩種硬件方案的對比,確定了一種最佳方案,實現(xiàn)了基準臂與移相臂之間移相角的數(shù)字控制信號的產(chǎn)生。論文搭建了以TMS320LF2407A為控制核心的硬件控制平臺。包括了采樣電路、保護電路、驅(qū)動電路、顯示電路等外圍電路。在此基礎(chǔ)上編制了系統(tǒng)的程序,完成了樣機,并對其進行了整機聯(lián)調(diào),給出了電源的實測波形。實驗結(jié)果證明基于DSP的DPLL完全可以勝任超音頻的頻率跟蹤,系統(tǒng)硬件電路可靠,程序運行良好。
上傳時間: 2022-06-19
上傳用戶:20125101110
論文通過對高精度脈沖式激光測距系統(tǒng)的研究,并在參照課題技術(shù)指標的基礎(chǔ)上,旨在提供一種高精度脈沖式激光測距系統(tǒng)的解決方案,并對脈沖式激光測距儀系統(tǒng)設(shè)計中所涉及的脈沖讀取與放大電路、時刻鑒別、時間間隔測量等關(guān)鍵技術(shù)進行了深入的研究和探討。論文利用電流-電壓轉(zhuǎn)換法對脈沖信號進行讀取,并使用了可控增益放大技術(shù),使得放大后的脈沖信號能在限定幅值范圍內(nèi)變化,減小了時刻鑒別中由于脈沖幅值波動所引起的漂移誤差;在時刻鑒別中,采用了預(yù)鑒別恒定比值鑒別法使漂移誤差進一步減小。時間間隔測量是論文的核心部分,基于TDC-GP2的時間間隔測量設(shè)計使系統(tǒng)的時差測量精度達到72ps,高精度的時差測量為系統(tǒng)測距精度提供了可靠保障。關(guān)鍵詞:脈沖激光測距;可控增益放大;蜂值檢測:時刻鑒別:TDC-GP2
標簽: 脈沖激光測距
上傳時間: 2022-06-21
上傳用戶:
本文以感應(yīng)加熱電源為研究對象,闡述了感應(yīng)加熱電源的基本原理及其發(fā)展趨勢。對感應(yīng)加熱電源常用的兩種拓撲結(jié)構(gòu)-電流型逆變器和電壓型逆變器做了比較分析,并分析了感應(yīng)加熱電源的各種調(diào)功方式。在對比幾種功率調(diào)節(jié)方式的基礎(chǔ)上,得出在整流側(cè)調(diào)功有利于高頻感應(yīng)加熱電源頻率和功率的提高的結(jié)論,選擇了不控整流加軟斬波器調(diào)功的感應(yīng)加熱電源作為研究對象,針對傳統(tǒng)硬斬波調(diào)功式感應(yīng)加熱電源功率損耗大的缺點,采用軟斬波調(diào)功方式,設(shè)計了一種零電流開關(guān)準諾振變換器ZCS-QRCs(Zero-current-switching-Quasi-resonant)倍頻式串聯(lián) 振高頻感應(yīng)加熱電源。介紹了該軟斬波調(diào)功器的組成結(jié)構(gòu)及其工作原理,通過仿真和實驗的方法研究了該軟斬波器的性能,從而得出該軟斬波器非常適合大功率高頻感應(yīng)加熱電源應(yīng)用場合的結(jié)論。同時設(shè)計了功率閉環(huán)控制系統(tǒng)和PI功率調(diào)節(jié)器,將感應(yīng)加熱電源的功率控制問題轉(zhuǎn)化為Buck斬波器的電壓控制問題。針對目前IGBT器件頻率較低的實際情況,本文提出了一種新的逆變拓撲-通過IGBT的并聯(lián)來實現(xiàn)倍頻,從而在保證感應(yīng)加熱電源大功率的前提下提高了其工作頻率,并在分析其工作原理的基礎(chǔ)上進行了仿真,驗證了理論分析的正確性,達到了預(yù)期的效果。另外,本文還設(shè)計了數(shù)字鎖相環(huán)(DPLL),使逆變器始終保持在功率因數(shù)近似為1的狀態(tài)下工作,實現(xiàn)電源的高效運行。最后,分析并設(shè)計了1GBT的緩沖吸收電路。本文第五章設(shè)計了一臺150kHz,10KW的倍頻式感應(yīng)加熱電源實驗樣機,其中斬波器頻率為20kHz,逆變器工作頻率為150kHz(每個IGBT工作頻率為75kHz),控制孩心采用TI公司的TMS320F2812 DSP控制芯片,簡化了系統(tǒng)結(jié)構(gòu)。實驗結(jié)果表明,該倍頻式感應(yīng)加熱電源實現(xiàn)了斬波器和逆變器功率器件的軟開關(guān),有效的減小了開關(guān)損耗,并實現(xiàn)了數(shù)字化,提高了整機效率。文章給出了整機的結(jié)構(gòu)設(shè)計,直流斬波部分控制框圖,逆變控制框圖,驅(qū)動電路的設(shè)計和保護電路的設(shè)計。同時,給出了關(guān)鍵電路的仿真和實驗波形。
上傳時間: 2022-06-22
上傳用戶:
IGBT是MOSFET和GTR的復(fù)合器件,它具有開關(guān)速度快、熱穩(wěn)定性好、驅(qū)動功率小和驅(qū)動電路簡單的特點,又具有通態(tài)壓降小、耐壓高和承受電流大等優(yōu)點.IGBT作為主流的功率輸出器件,特別是在大功率的場合,已經(jīng)被廣泛的應(yīng)用于各個領(lǐng)域。本文在介紹了1GBT結(jié)構(gòu)、工作特性的基礎(chǔ)上,針對風(fēng)電變流器實驗平臺和岸電電源的實際應(yīng)用,選擇了各自的IGBT模塊。然后對IGBT的驅(qū)動電路進行了深入地研究,詳細地說明了IGBT對柵極驅(qū)動的一些特殊要求及應(yīng)該滿足的條件。接著對三種典型的驅(qū)動模塊進行了分析,同時分別針對風(fēng)電變流器實驗平臺和岸電電源,設(shè)計了三菱的M57962AL和Concept的2SD315A驅(qū)動模塊的外圍驅(qū)動電路。對于大功率的設(shè)備,電路中經(jīng)常會遇到過流、過壓、過溫的問題,因此必要的保護措施是必不可少的。針對上述問題,本文分析了出現(xiàn)各種狀況的原因,并給出了各自的解決方案:采用分散式和集中式過流保護相結(jié)合的方法實現(xiàn)過電流保護;采用緩存吸收電路及采樣檢測電路以防止過電壓的出現(xiàn);通過選擇正確的散熱器及利用鉑電阻的特性來實施檢測溫度,從而使電路能夠更好地可靠運行。同時,為了滿足今后1.5MW風(fēng)電變流器和試驗電源等更大功率設(shè)備的需求,在性價比上更傾向于采用IGBT模塊串、并聯(lián)的方式來取代高耐壓、大電流的單管1GBT.本文就同一橋臂的IGBT串聯(lián)不均壓,并聯(lián)不均流的問題進行了闡述,并給出了相應(yīng)的解決方案。最后針對上述的不平衡情形,采用PSpice對其進行仿真模擬,并通過加入均壓、均流電路后的仿真結(jié)果,有效地說明了電路的可行性。
上傳時間: 2022-06-22
上傳用戶:
本論文主要研究自激式RF電源的功率控制,主要分為七個部分:第部分主要介紹ICP儀器的發(fā)展歷史、RF電源的主流技術(shù)路線及國內(nèi)外研究現(xiàn)狀,指出了存在的部分問題,確立了本文研究主題。第二部分簡介了ICP儀器的系統(tǒng)結(jié)構(gòu),重點介紹等離子炬光源以及自激式RF電源。首先從系統(tǒng)的角度介紹了ICP儀器的組成及工作原理,然后對等離子矩光源的產(chǎn)生條件及生成機理作了說明,并且對其在點火過程中表現(xiàn)的負載特性作了分析,最后從ICP儀器的分析性能方面說明了它對RF電源的設(shè)計要求,明確RF電源的設(shè)計指標。第三部分詳細介紹了自激式RF電源的實現(xiàn)原理。按照信號流向首先介紹了作為跟蹤等離子矩特性的振蕩源——鎖相環(huán)的原理,分別對其中的鑒相器、環(huán)路濾波器、壓控振蕩器和驅(qū)動電路等做了詳細介紹。然后介紹了高頻功率放大器的原理,確定了主要元件參數(shù),并介紹了適用于自激式RF電源的電路結(jié)構(gòu)。最后對阻抗匹配原理作了介紹,并重點介紹了集中參數(shù)元件匹配網(wǎng)絡(luò)。第四部分詳細介紹了本文所做的設(shè)計工作,包含軟硬件設(shè)計。這部分仍然是按信號流向作說明,根據(jù)自激式RF電源的結(jié)構(gòu)特點,針對這幾部分選擇合適的電路結(jié)構(gòu)、元件參數(shù)等設(shè)計完成鎖相環(huán)路、高效率E類推挽功率放大電路以及阻抗匹配網(wǎng)絡(luò)。除此之外,還包括電路中的主要信號采樣與檢測、熱設(shè)計、電磁兼容設(shè)計以及軟件部分的設(shè)計說明。第五部分對本文采取的功率控制流程與策略作詳細說明,介紹了如何通過改善控制流程和控制策略以提高RF電源性能。第六部分對所設(shè)計的RF電源進行了測試,表明本設(shè)計達到了預(yù)定的設(shè)計指標,說明此方法的可行性與實用性,并且分析了等離子炬的負載變化過程,對RF電源的設(shè)計提供了有益的參考。第七部分作了全文總結(jié)與展望。所設(shè)計RF電源成功點燃等離子炬,期間通過對RF電源的測試,并在ICP-AES整機上進行了系統(tǒng)驗證,測試證明所設(shè)計的自激式RF電源與同類電源相比性能有所提升。
上傳時間: 2022-06-23
上傳用戶:
電子技術(shù)的應(yīng)用已深入到工農(nóng)業(yè)經(jīng)濟建設(shè),交通運輸,空間技術(shù),國防現(xiàn)代化,醫(yī)療,環(huán)保,和人們?nèi)粘I畹母鱾€領(lǐng)域,進入新世紀后電力電子技術(shù)的應(yīng)用更加廣泛,因此對電力電子技術(shù)的研究更為重要。近幾年越來越多電力電子應(yīng)用在國民工業(yè)中,一些技術(shù)先進的國家,經(jīng)過電力電子技術(shù)處理的電能己達到總電能的一半以上。本文主要介紹基于MCS-51系列單片機80C51芯片控制的三相橋式全控整流電路的主電路和觸發(fā)電路的原理及控制電路,具體運行由工頻三相電壓經(jīng)變壓器后在芯片控制下在不同的時刻發(fā)出不同的脈沖信號去控制相應(yīng)的SCR可控硅整流為直流電給負載供電。此種控制方式其主要優(yōu)點是輸出波形穩(wěn)定和可靠性高抗干擾強的特點。觸發(fā)電路結(jié)構(gòu)簡單,控制靈活,溫度影響小,控制精度可通過軟件補償,移相范圍可任意調(diào)節(jié)等特點,目前已獲得業(yè)界的廣泛認可。并將在很多的工業(yè)控制中得到很好的運用。
上傳時間: 2022-06-25
上傳用戶:
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1