The PCA9557 is a silicon CMOS circuit which provides parallel input/output expansion for SMBus and I2C-bus applications. The PCA9557 consists of an 8-bit input port register, 8-bit output port register, and an I2C-bus/SMBus interface. It has low current consumption and a high-impedance open-drain output pin, IO0. The system master can enable the PCA9557’s I/O as either input or output by writing to the configuration register. The system master can also invert the PCA9557 inputs by writing to the active HIGH polarity inversion register. Finally, the system master can reset the PCA9557 in the event of a time-out by asserting a LOW in the reset input. The power-on reset puts the registers in their default state and initializes the I2C-bus/SMBus state machine. The RESET pin causes the same reset/initialization to occur without de-powering the part.
標(biāo)簽: C-bus SMBus reset port
上傳時(shí)間: 2014-01-18
上傳用戶:bs2005
Although Stellaris microcontrollers have generous internal SRAM capabilities, certain applicationsmay have data storage requirements that exceed the 8 KB limit of the Stellaris LM3S8xx seriesdevices. Since microcontrollers do not have an external parallel data-bus, serial memory optionsmust be considered. Until recently, the ubiquitous serial EEPROM/flash device was the only serialmemory solution. The major limitations of EEPROM and flash technology are slow write speed, slowerase times, and limited write/erase endurance.Recently, serial SRAM devices have become available as a solution for high-speed dataapplications. The N256S08xxHDA series of devices, from AMI Semiconductor, offer 32 K x 8 bits oflow-power data storage, a fast Serial Peripheral Interface (SPI) serial bus, and unlimited write cycles.The parts are available in 8-pin SOIC and compact TSSOP packages.
標(biāo)簽: Adding Serial SRAM 32
上傳時(shí)間: 2013-10-14
上傳用戶:cxl274287265
The C500 microcontroller family usually provides only one on-chip synchronous serialchannel (SSC). If a second SSC is required, an emulation of the missing interface mayhelp to avoid an external hardware solution with additional electronic components.The solution presented in this paper and in the attached source files emulates the mostimportant SSC functions by using optimized SW routines with a performance up to 25KBaud in Slave Mode with half duplex transmission and an overhead less than 60% atSAB C513 with 12 MHz. Due to the implementation in C this performance is not the limitof the chip. A pure implementation in assembler will result in a strong reduction of theCPU load and therefore increase the maximum speed of the interface. In addition,microcontrollers like the SAB C505 will speed up the interface by a factor of two becauseof an optimized architecture compared with the SAB C513.Moreover, this solution lays stress on using as few on-chip hardware resources aspossible. A more excessive consumption of those resources will result in a highermaximum speed of the emulated interface.Due to the restricted performance of an 8 bit microcontroller a pin compatible solution isprovided only; the internal register based programming interface is replaced by a set ofsubroutine calls.The attached source files also contain a test shell, which demonstrates how to exchangeinformation between an on-chip HW-SSC and the emulated SW-SSC via 5 external wiresin different operation modes. It is based on the SAB C513 (Siemens 8 bit microcontroller).A table with load measurements is presented to give an indication for the fraction of CPUperformance required by software for emulating the SSC.
標(biāo)簽: synchronous Emulating serial
上傳時(shí)間: 2014-01-31
上傳用戶:z1191176801
The Motorola MPC106 PCI bridge/memory controller provides a PowerPCªmicroprocessor common hardware reference platform (CHRPª) compliant bridgebetween the PowerPC microprocessor family and the Peripheral Component Interconnect(PCI) bus. In this document, the term Ô106Õ is used as an abbreviation for the phraseÔMPC106 PCI bridge/memory controllerÕ. This document contains pertinent physicalcharacteristics of the 106. For functional characteristics refer to theMPC106 PCI Bridge/Memory Controller UserÕs Manual.This document contains the following topics:Topic PageSection 1.1, ÒOverviewÓ 2Section 1.2, ÒFeaturesÓ 3Section 1.3, ÒGeneral ParametersÓ 5Section 1.4, ÒElectrical and Thermal CharacteristicsÓ 5Section 1.5, ÒPin AssignmentsÓ 17Section 1.6, ÒPinout Listings 18Section 1.7, ÒPackage DescriptionÓ 22Section 1.8, ÒSystem Design InformationÓ 24Section 1.9, ÒDocument Revision HistoryÓ 29Section 1.10, ÒOrdering InformationÓ 29
標(biāo)簽: MPC 106 PCI 存儲(chǔ)器
上傳時(shí)間: 2013-11-04
上傳用戶:as275944189
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
標(biāo)簽: Signal Input Fall Rise
上傳時(shí)間: 2013-10-23
上傳用戶:copu
All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.
標(biāo)簽: C16x 微控制器 輸入信號(hào) 時(shí)序圖
上傳時(shí)間: 2014-04-02
上傳用戶:han_zh
The MC68HC05K0 is a low cost, low pin countsingle chip microcomputer with 504 bytes of userROM and 32 bytes of RAM. The MC68HC05K0 isa member of the 68HC05K series of devices whichare available in 16-pin DIL or SOIC packages.It uses the same CPU as the other devices in the68HC05 family and has the same instructions andregisters. Additionally, the device has a 15-stagemulti-function timer and 10 general purposebi-directional I/0 lines. A mask option is availablefor software programmable pull-downs on all ofthe I/O pins and four of the pins are capable ofgenerating interrupts.The device is ideally suited for remote-controlkeyboard applications because the pull-downs andthe interrupt drivers on the port pins allowkeyboards to be built without any externalcomponents except the keys themselves. There isno need for external pull-up or pull-down resistors,or diodes for wired-OR interrupts, as these featuresare already designed into the device.
標(biāo)簽: Infra-red Remote Cont 05K
上傳時(shí)間: 2014-01-24
上傳用戶:zl5712176
The STWD100 watchdog timer circuits are self-contained devices which prevent systemfailures that are caused by certain types of hardware errors (non-responding peripherals,bus contention, etc.) or software errors (bad code jump, code stuck in loop, etc.).The STWD100 watchdog timer has an input, WDI, and an output, WDO (see Figure 2). Theinput is used to clear the internal watchdog timer periodically within the specified timeoutperiod, twd (see Section 3: Watchdog timing). While the system is operating correctly, itperiodically toggles the watchdog input, WDI. If the system fails, the watchdog timer is notreset, a system alert is generated and the watchdog output, WDO, is asserted (seeSection 3: Watchdog timing).The STWD100 circuit also has an enable pin, EN (see Figure 2), which can enable ordisable the watchdog functionality. The EN pin is connected to the internal pull-downresistor. The device is enabled if the EN pin is left floating.
上傳時(shí)間: 2013-10-22
上傳用戶:taiyang250072
微型打印機(jī)的C語言源程序:微型打印機(jī)的C51源程序#define uchar unsigned char#define uint unsigned int#include <reg52.h>#include <stdio.h>#include <absacc.h>#include <math.h>#include <string.h>#include <ctype.h>#include <stdlib.h>#define PIN XBYTE[0x8000]#define POUT XBYTE[0x9000]sbit PRINTSTB =P1^6;sbit DOG=P1^7;bdata char pin&#118alue;sbit PRINTBUSY=pin&#118alue^7;sbit PRINTSEL =pin&#118alue^6;sbit PRINTERR =pin&#118alue^5;sbit PRINTACK =pin&#118alue^4; void PrintString(uchar *String1,uchar *String2);void initprint(void);void print(uchar a); void initprint(void) //打印機(jī)初始化子程序 { pin&#118alue=PIN; if((PRINTSEL==1)&&(PRINTERR==1)) { print(0x1b); print(0x40); print(0x1b); print(0x38); print(0x4); }}void print(uchar a) //打印字符a{ pin&#118alue=PIN; if((PRINTSEL==0)||(PRINTERR==0)) return; for(;;) { DOG=~DOG; pin&#118alue=PIN; if(PRINTBUSY==0) break; } DOG=~DOG; POUT=a; PRINTSTB=1; PRINTSTB=1; PRINTSTB=1; PRINTSTB=1; PRINTSTB=0; PRINTSTB=0; PRINTSTB=0; PRINTSTB=0; PRINTSTB=1;}void PrintString(uchar *String) //打印字符串后回車{ uchar CH; for (;;) { DOG=~DOG; CH=*String; if (CH==0) { print(0x0d); break; } print(CH); String++; } initprint();}
上傳時(shí)間: 2013-10-18
上傳用戶:hasan2015
三種方法讀取鍵值 使用者設(shè)計(jì)行列鍵盤介面,一般常採用三種方法讀取鍵值。 中斷式 在鍵盤按下時(shí)產(chǎn)生一個(gè)外部中斷通知CPU,並由中斷處理程式通過不同位址讀資料線上的狀態(tài)判斷哪個(gè)按鍵被按下。 本實(shí)驗(yàn)採用中斷式實(shí)現(xiàn)使用者鍵盤介面。 掃描法 對(duì)鍵盤上的某一行送低電位,其他為高電位,然後讀取列值,若列值中有一位是低,表明該行與低電位對(duì)應(yīng)列的鍵被按下。否則掃描下一行。 反轉(zhuǎn)法 先將所有行掃描線輸出低電位,讀列值,若列值有一位是低表明有鍵按下;接著所有列掃描線輸出低電位,再讀行值。 根據(jù)讀到的值組合就可以查表得到鍵碼。4x4鍵盤按4行4列組成如圖電路結(jié)構(gòu)。按鍵按下將會(huì)使行列連成通路,這也是見的使用者鍵盤設(shè)計(jì)電路。 //-----------4X4鍵盤程序--------------// uchar keboard(void) { uchar xxa,yyb,i,key; if((PINC&0x0f)!=0x0f) //是否有按鍵按下 {delayms(1); //延時(shí)去抖動(dòng) if((PINC&0x0f)!=0x0f) //有按下則判斷 { xxa=~(PINC|0xf0); //0000xxxx DDRC=0x0f; PORTC=0xf0; delay_1ms(); yyb=~(PINC|0x0f); //xxxx0000 DDRC=0xf0; //復(fù)位 PORTC=0x0f; while((PINC&0x0f)!=0x0f) //按鍵是否放開 { display(data); } i=4; //計(jì)算返回碼 while(xxa!=0) { xxa=xxa>>1; i--; } if(yyb==0x80) key=i; else if(yyb==0x40) key=4+i; else if(yyb==0x20) key=8+i; else if(yyb==0x10) key=12+i; return key; //返回按下的鍵盤碼 } } else return 17; //沒有按鍵按下 }
上傳時(shí)間: 2013-11-12
上傳用戶:a673761058
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1