亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

大數據分析

  • LDO環路分析及補償

    低壓差線性穩壓器(Low Dropout Voltage Regulator,LDO)屬于線性穩壓器的一種,但由于其壓差較低,相對于一般線性穩壓器而言具有較高的轉換效率。但在電路穩定性上有所下降,而且LDO有著較高的輸出電阻,使得輸出極點的位置會隨著負載情況有很大關系。因此需要對LDO進行頻率補償來滿足其環路穩定性要求。內容安排上第一節首先簡單介紹各種線性穩壓源的區別:第二節介紹LDO中的主要參數及設計中需要考慮折中的一些問題;第三節對LDO開環電路的三個模塊,運放模塊,PMOS模塊和反饋模塊進行簡化的小信號分析,得出其傳輸函數并判斷其零極點:第四節針對前面分析的三個LDO環路模塊分別進行補償考慮,并結合RT9193電路對三種補償方法進行了仿真驗證和解釋說明。該電路主要包含基準電路以及相關啟動電路,保護電路(OTP,OCP等),誤差放大器,調整管(Pass Element)和電阻反饋網絡。在電路上,通過連接到誤差放大器反相輸入端的分壓電阻對輸出電壓進行采樣,誤差放大器的同相輸入端連接到一個基準電壓(Bandgap Reference),誤差放大器會使得兩個輸入端電壓基本相等,因此,可以通過控制調整管輸出足夠的負載電流以保證輸出電壓穩定。電路所采用的調整管不同,其Dropout電壓不同。以前大多使用三極管來作為穩壓源的調整管,常見的有NPN穩壓源,PNP穩壓源(LDO),準LDO穩壓源,其調整管如圖2所示,其Dorpout電壓分別是:VoRop=2VBE+ Vsr-NPN穩壓源VoRоP =VsurPNP穩壓源(LDO)VDRoP=VE + Vsur-準LDO穩壓源

    標簽: ldo 環路分析

    上傳時間: 2022-06-19

    上傳用戶:

  • PWM整流電路的原理分析

    無論是不控整流電路,還是相控整流電路,功率因數低都是難以克服的缺點.PWM整流電路是采用PWM控制方式和全控型器件組成的整流電路,本文以《電力電子技術 教材為基礎,詳細分析了單相電壓型橋式PWM整流電路的工作原理和四種工作模式.通過對PWM整流電路進行控制,選擇適當的工作模式和工作時間間隔,交流側的電流可以按規定目標變化,使得能量在交流側和直流側實現雙向流動,且交流側電流非常接近正弦波,和交流側電壓同相位,可使變流裝墨獲得較高的功率因數.:PWM整流電路:功率因數:交流側:直流側傳統的整流電路中,晶閘管相控整流電路的輸入電流滯后于電壓,其滯后角隨著觸發角的增大而增大,位移因數也隨之降低。同時輸入中諧波分量也相當大、因此功率因數很低。而二極管不控整流電路雖然位移因數接近于1,但輸入電流中諧波分量很大,功率因數也較低。PWM整流電路是采用PWM控制方式和全控型器件組成的整流電路,它能在不同程度上解決傳統整流電路存在的問題。把逆變電路中的SPWM控制技術用于整流電路,就形成了PWM整流電路。通過對PWM整流電路進行控制,使其輸入電流非常接近正弦波,且和輸入電壓同相位,則功率因數近似為1。因此,PWM整流電路也稱單位功率因數變流器。

    標簽: pwm 整流電路

    上傳時間: 2022-06-20

    上傳用戶:

  • 三相逆變器中IGBT的幾種驅動電路的分析.

    摘要:對幾種三相逆變器中常用的IGBT驅動專用集成電路進行了詳細的分析,對TLP250,EXB系列和M579系列進行了深入的討論,給出了它們的電氣特性參數和內部功能方框圖,還給出了它們的典型應用電路。討論了它們的使用要點及注意事項,對每種驅動芯片進行了IGBT的驅動實驗,通過有關的波形驗證了它們的特點,最后得出結論:IGBT驅動集成電路的發展趨勢是集過流保護、驅動信號放大功能、能夠外接電源且具有很強抗干擾能力等于一體的復合型電路。關鍵詞:絕緣柵雙極晶體管:集成電路;過流保護1前言電力電子變換技術的發展,使得各種各樣的電力電子器件得到了迅速的發展.20世紀80年代,為了給高電壓應用環境提供一種高輸入阻抗的器件,有人提出了絕緣門極雙極型品體管(IGBT)[1].在IGBT中,用一個MoS門極區來控制寬基區的高電壓雙極型晶體管的電流傳輸,這藏產生了一種具有功率MOSFET的高輸入阻抗與雙極型器件優越通態特性相結合的非常誘人的器件,它具有控制功率小、開關速度快和電流處理能力大、飽和壓降低等性能。在中小功率、低噪音和高性能的電源、逆變器、不間斷電源(UPS)和交流電機調速系統的設計中,它是日前最為常見的一種器件。

    標簽: 三相逆變器 igbt 驅動電路

    上傳時間: 2022-06-21

    上傳用戶:jiabin

  • 大功率器件IGBT散熱分析

    0引言任何器件在工作時都有一定的損耗,大部分的損耗均變成熱量。在實際應用過程中,大功率器件IGBT在工作時會產生很大的損耗,這些損耗通常表現為熱量。為了使ICBT能正常工作,必須保證IGBT的耗散功率不大于最大允許耗散功率P額定1660 w,室溫25℃時),必須保證1GBT的結溫T,不超過其最大值Timar 50 ℃),因此必須采用適當的散熱裝置,將熱量傳導到外部環境。如果散熱裝置設計或選用不當,這些大功率器件因過熱而損壞。為了在確定的散熱條件下設計或選用合適的散熱器,確保器件安全、可靠地工作,我們需進行散熱計算。散熱計算是通過計算器件工作時產生的損耗功率Pa、器件允許的結溫T、環境溫度T,求出器件允許的總熱阻R,f-a);:再根據Raf-a)求出最大允許的散熱器到環境溫度的熱阻Rinf-):最后根據Rbf-a)選取具有合適熱阻的散熱器。1 IGBT損耗分析及計算對于H型雙極模式PWM系統中使用的1GBT模塊,主要由IGBT元件和續流二極管FWD組成,它們各自發生的損耗之和就是IGBT本身的損耗。除此,加上1GBT的基極驅動功耗,即構成IGRT模塊整體發生的損耗。另外,發生損耗的情況可分為穩態時和交換時。對上述內容進行整理可表述如下:

    標簽: 大功率器件 igbt 散熱

    上傳時間: 2022-06-21

    上傳用戶:

  • 逆變器IGBT損壞原因分析及處理

    1前言萊鋼型鋼廠大型生產線傳動系統采用西門子SIMOVERT MASTER系列PWM交-直-交電壓型變頻器供電,變頻器采用公共直流母線式結構;冷床傳輸鏈采用4臺電機單獨傳動,每臺電機分別由獨立的逆變單元控制,逆變單元的控制方式為無速度編碼器的矢量控制,相互之間依靠速度給定的同時性保持同步。自2005年投入生產以來,冷床傳輸鏈運行較為穩定,但2007年2月以后,冷床傳輸鏈逆變單元頻繁出現絕緣柵雙極型晶體管(Insolated Gate Bipolar Transistor,IGBT)損壞現象,具體故障情況統計見表1由表1可知,冷床傳輸鏈4臺逆變器都出現過IGBT損壞的現象,故障代碼是F025和F0272原因分析1)IGBT損壞一般是由于輸出短路或接地等外部原因造成。但從實際情況上看,檢查輸出電纜及電機等外部條件沒有問題,并且更換新的IGBT后,系統可以立即正常運行,從而排除了輸出短路或接地等外部條件造成IGBT損壞。2)IGBT存在過壓。該系統采用公共直流母線控制方式,制動電阻直接掛接于直流母線上,當逆變單元的反饋能量使直流母線電壓超過DC 715 V時,制動單元動作,進行能耗制動;此外掛接于該直流母線上的其他逆變單元并沒有出現IGBT損壞的現象,因此不是由于制動反饋過壓造成IGBT燒壞。3)由于負荷分配不均造成出力大的IGBT損壞。從實際運行波形上看,負荷分配相對較為均勻,相互差別僅為2%左右,應該不會造成IGBT損壞。此外,4只逆變單元都出現了IGBT損壞現象,如果是由于負荷分配不均造成,應該出力大的逆變單元IGBT總是燒壞,因此排除由于負荷分配不均造成IGBT損壞。4)逆變單元容量選擇不合適,裝置容量偏小造成長期過流運行,從而導致IGBT燒毀。逆變單元型號及電機參數:額定功率90kw,額定電流186A,負載電流169 A,短時電流254 A,中間同路額定電流221 A,電源電流205 A,電機功率110kw,電機額定電流205 A,電機正常運行時的電流及轉矩波形如圖1所示。

    標簽: 逆變器 igbt

    上傳時間: 2022-06-22

    上傳用戶:

  • 大數據分析的深度神經網絡方法

    自然語言處理:顛覆傳統自然語言處理模式,突破自然語言處理前沿難關視覺內容理解:將視覺對象和自然語言相結合,打造可用的視覺內容理解產品語音識別:語音識別率大幅上升,入選MIT科技評論2016年十大突破技術

    標簽: 大數據 深度神經網絡

    上傳時間: 2022-06-22

    上傳用戶:

  • CCD攝像機大視場光學鏡頭的設計

    摘要:為提高CCD攝像機的成像質量,同時使鏡頭結構緊湊、小型化,在大視場光學鏡頭的設計中,引入標準二次曲面和偶次非球面。根據初級像差理論,分析了非球面的位置、初始結構參數的求解規律。通過理論計算和ZEMAX光學設計軟件的優化,給出工作波長為Q~Q7m、全視場角為80,相對孔徑為1:15的鏡頭設計實例。該鏡頭由7塊鏡片組成,包括一個標準二次曲面和兩個8次方非球面;在40p/mm空間頻率處的MTF值超過Q85,全視場畸變小于3%,像質優良。關鍵詞:CCD攝像機;大視場;光學鏡頭;非球面引言CCD攝像設備在圖像傳感領域的迅速發展,成為現代光電子學和測試技術中最為引人關注的研究熱點之一。在科研領域,由于CCD具有靈敏度高、噪聲低、成本低、小而輕等優點,已成為研究宏觀(如天體)和微觀(如生物細胞)現象不可缺少的工具。在國防軍事領域,CCD成像技術在微光、夜視及遙感應用中發揮著巨大的作用。總之,在各類光電成像領域中,它已逐步取代了真空攝像管的成像系統。

    標簽: ccd 攝像機

    上傳時間: 2022-06-23

    上傳用戶:

  • 微積分、高等數學和數學分析的差別

    數學分析對于數學專業的學生是邁進大學大門后,需要修的第一門課,也是最基礎最重要的一門課程。但對于非數學專業的朋友們是個陌生的概念,如果身邊有人問我數學分析學什么?我會毫不猶豫地告訴他們就是微積分,那么似乎所有人都會接著提一個問題:那和我們學的微積分有什么差異?為什么我們學一學期你們要學一年半到兩年啊?囧……這個問題就不容易回答了,于是我只能應付說學得細了,但其實并非僅僅如此。對這個問題我在學習數學分析的過程中是不能說清楚的,正因為如此,起先學分析完全是亂學,沒有重點沒有次序的模仿,其結果就是感覺自己學到的東西好比是一條細線拴著好多個大秤癥,只要有一點斷開,整個知識系統頓時傾覆。我也一直在思考這個問題,但直到在北師大跟著王昆揚老師學了一學期實變函數論之后,我才意識到數分與高數真正的區別在于何處。先從微積分說起,在國內微積分這門課程大致是供文科、經濟類學生選修的,其知識結構非常清晰,主要內容就是要說清兩件事:第一件介紹兩種運算,求導與求不定積分,并且說明它們互為逆運算。第二件介紹基礎的微分學和積分學,并且給出它們之間的聯系—Newton-Leibniz公式。這里需要強調的是,求不定積分作為求導數的逆運算屬于微分學而不屬于積分學,真正屬于積分學的是Riemann定積分。不定積分與定積分雖然在字面上只差一字,但從數學定義來看卻有本質的區別,不定積分是找一個函數的原函數,而Riemann定積分則是求Riemann和的極限,事實上它們之間毫無關系,既存在著沒有原函數但Riemann可積的函數,也存在著有原函數但Riemann不可積的函數。但無論如何Newton-Leibniz 公式好比一座橋梁溝通了不定積分(微分學)和定積分(積分學),這也是Newton-Leibniz公式被稱為微積分基本定理的原因。因此我們可以看出,微積分的核心內容就是學習兩種新運算,了解兩樣新概念,熟悉一條基本定理而已。

    標簽: 微積分 高等數學

    上傳時間: 2022-06-24

    上傳用戶:xsr1983

  • 十個精密整流電路的詳細分析

    圖1是最經典的電路,優點是可以在電阻R5上并聯濾波電容.電阻匹配關系為R1=R2,R4=R5=2R3;可以通過更改R5來調節增益當Ui>O時,分析各點電壓正負關系可知D1截止,D2導通,R1,R2和A1構成了反向比例運算器,增益為-1,R4,R3,R5和A2構成了反向求和電路,通過R4的支路的增益為-1,通過R3支路的增益為2,等效框圖如下:當Ui<0時,分析各點電壓的正負關系可知,D1導通,D2截止,A1的作用導致R2左端電壓鉗位在0V,A2的反饋導致R3右端電壓鉗位在0V,所以R2、R3支路兩端電位相等,無電流通過,R4,R5和A2構成反向比例運算器,增益為-1,輸入阻抗仍為R1R4。因此,此電路的輸出等于輸入的絕對值。此電路的優點:輸入阻抗恒等于R1IR4,輸入阻抗低,調節R5可調節此電路的增益大小,在R5上并聯電容可實現濾波功能。此電路適用低頻電路,當頻率大時,輸出電壓產生偏移,且輸入電壓接近0V時,輸出電壓失真,二極管的選型也非常重要,需選導通壓降大些的。輸入信號小時,也會影響最終輸出。

    標簽: 精密整流電路

    上傳時間: 2022-06-25

    上傳用戶:qdxqdxqdxqdx

  • 半導體芯片失效分析

    從典型的表面貼裝工廠的實踐來看,半導體失效原因主要分為與材料有關的失效、與工藝有關的失效,以及電學失效。通常與材料和工藝有關的失效發生的較為頻繁,而且失效率很高,但是占有90%以上的失效并不是真正的失效,有經驗的工藝工程師和失效分析工程師可以通過 射線焊點檢測儀、掃描電子顯微鏡、能量分散譜、于同批產品交叉試驗就可以確定失效與否,從而找到真正的原因。本文基于摩托羅拉汽車電子廠的實踐簡要介紹前兩種失效形式,著重研究電學失效的特點和形式,前兩種失效形式往往需要靠經驗來判斷,而電學失效更需要一定的理論知識給與指導分析。電學失效中,首先介紹芯片失效分析手段、分析程序,以及國內外失效分析實驗室設備情況,在電學失效分析中所面臨的最大挑戰是失效點的定位和物理分析,在摩托羅拉汽車電子廠實踐中發現,對產品質量影響最主要的是接孔(Via)失效,它是汽車整車裝配廠客戶的主要抱怨以及影響產品可靠性導致整車召回的主要原因之一。本文基于接孔失效實際案例中的統計數據,討論了接孔失效的失效分布狀態函數,回歸了威布爾曲線,計算出分布參數m和c:在阿列里烏斯(Arhenius)失效模型的基礎上建立了接孔失效模型,并計算模型參數溫度壽命加速因子,從而估算出受器件影響的產品的壽命。本文目的旨在基于表面貼裝工廠的具體芯片失效統計數據,進行實際工程的失效分析,探索企業建立失效分析以控制產品質量、提高產品可靠性的機制

    標簽: 半導體芯片

    上傳時間: 2022-06-26

    上傳用戶:

主站蜘蛛池模板: 富源县| 水富县| 格尔木市| 易门县| 敦煌市| 锦州市| 夏津县| 南郑县| 沅江市| 锡林浩特市| 得荣县| 泾源县| 长治市| 咸阳市| 蓬溪县| 松潘县| 新建县| 海丰县| 屏山县| 澄迈县| 台中县| 茂名市| 普定县| 白山市| 镇康县| 太仓市| 城固县| 朝阳市| 固原市| 乳源| 新建县| 那曲县| 澄迈县| 积石山| 孟津县| 巨鹿县| 常熟市| 和龙市| 颍上县| 正镶白旗| 泗水县|