介紹了小波分解和重構(gòu),對(duì)讀者有較大的幫助
標(biāo)簽: 小波分解
上傳時(shí)間: 2016-05-12
上傳用戶:lijinlong
這是一組小波分解與重構(gòu)代碼,大家可以交流學(xué)習(xí)
上傳時(shí)間: 2020-01-02
上傳用戶:461494244lcz
tubian2.m為對(duì)一實(shí)際信號(hào)做小波多層分解,wokao.m為各層小波分解后的電壓有效值,其余為小波模極大程序和一實(shí)際電信號(hào)的濾波程序
標(biāo)簽: tubian 信號(hào) 多層 分解
上傳時(shí)間: 2013-12-31
上傳用戶:362279997
可以對(duì)一組數(shù)據(jù)進(jìn)行5尺度的小波分解,得到高頻部分和低頻部分
標(biāo)簽: db5 小波變換 分解 尺度
上傳時(shí)間: 2017-05-23
上傳用戶:haiao
磁共振成像(MRI)由于自身獨(dú)特的成像特點(diǎn),使得其處理方法不同于一般圖像.根據(jù)不同的應(yīng)用目的,該文分別提出了MRI圖像去噪和分割兩個(gè)算法.首先,該文針對(duì)MRI重建后圖像噪聲分布的實(shí)際特點(diǎn),提出了基于小波變換的MRI圖像去噪算法.該算法詳細(xì)闡明了MRI圖像Rician噪聲的特點(diǎn),首先對(duì)與噪聲和邊緣相關(guān)的小波系數(shù)進(jìn)行建模,然后利用最大似然估計(jì)來(lái)進(jìn)行參數(shù)估計(jì),同時(shí)利用連續(xù)尺度間的尺度相關(guān)性特點(diǎn)來(lái)進(jìn)行函數(shù)升級(jí),以便獲得最佳萎縮函數(shù),進(jìn)一步提高圖像的質(zhì)量,最終取得了一定的效果.與此同時(shí),該文對(duì)MRI圖像的進(jìn)一步的分析與應(yīng)用展開了一定研究,提出了一種改進(jìn)的快速模糊C均值聚類魯棒分割算法.該算法先用K均值聚類方法得到初始聚類中心點(diǎn),同時(shí)考慮鄰域?qū)Ψ指罱Y(jié)果的影響,對(duì)目標(biāo)函數(shù)加以改進(jìn),用來(lái)克服噪聲和非均勻場(chǎng)對(duì)MRI圖像分割的影響,達(dá)到魯棒分割的目的,為進(jìn)一步圖像處理和分析打下基礎(chǔ).通過實(shí)驗(yàn),我們發(fā)現(xiàn),無(wú)論是針對(duì)模擬圖像還是實(shí)際圖像,該文所提出的兩個(gè)算法都取得了較好的效果,達(dá)到了預(yù)期的目的.
標(biāo)簽: MRI 小波分解 圖像去噪 分割
上傳時(shí)間: 2013-04-24
上傳用戶:zhichenglu
隨著遙感影像數(shù)據(jù)量不斷增長(zhǎng),為了更加高效地組織與管理海量的遙感影像,研究并提出了改進(jìn)的基于小波分解的影像金字塔構(gòu)建方法。利用多分辨率分析和圖像的小波分解與重構(gòu)算法,參考影像金字塔構(gòu)建的一般方法,將圖像小波分解的不同級(jí)系數(shù)量化、編碼后,分別存儲(chǔ)于金字塔的不同層中。該構(gòu)建方法可以有效地降低金字塔各層之間的數(shù)據(jù)冗余,減少總數(shù)據(jù)量和瀏覽時(shí)的數(shù)據(jù)流量,并能更好地支持嵌入式碼流和漸進(jìn)式傳輸。
標(biāo)簽: 小波變換 金字塔模型
上傳時(shí)間: 2013-10-20
上傳用戶:1477849018@qq.com
針對(duì)信號(hào)檢測(cè)中經(jīng)常存在的噪聲污染問題,利用小波分解之后可以在各個(gè)層次選擇閾值,對(duì)噪聲成分進(jìn)行抑制,手段更加靈活。本文介紹了小波變換的一般理論以及在信號(hào)降噪中的應(yīng)用,分析了被噪聲污染后的信號(hào)的特性;利用MATLAB軟件進(jìn)行了信號(hào)降噪的模擬仿真實(shí)驗(yàn)并在降噪光滑性和相似性兩個(gè)方面體現(xiàn)出小波變換的優(yōu)勢(shì)。本文分別使用了不同類型的小波和相同類型小波下不同閾值對(duì)信號(hào)進(jìn)行了降噪.仿真結(jié)果表明小波變換具有良好降噪的效果。
標(biāo)簽: 小波分析 信號(hào)降噪 中的應(yīng)用
上傳時(shí)間: 2013-10-19
上傳用戶:alex wang
提出了一種基于仿生小波變換和模糊推理的變步長(zhǎng)自適應(yīng)濾波語(yǔ)音降噪算法。該算法首先用仿生小波變換法對(duì)包含噪聲的語(yǔ)音信號(hào)進(jìn)行小波分解,以分離出來(lái)的噪聲信號(hào)作為自適應(yīng)濾波器的輸入,選擇基于模糊推理變步長(zhǎng)自適應(yīng)算法對(duì)帶噪聲語(yǔ)音信號(hào)進(jìn)行降噪處理,最終實(shí)現(xiàn)語(yǔ)音信號(hào)的信噪分離,去除語(yǔ)音信號(hào)中的噪聲。仿真結(jié)果表明,該方法對(duì)語(yǔ)音信號(hào)有較為明顯的降噪效果。
標(biāo)簽: 仿生 小波變換 模糊推理 語(yǔ)音降噪
上傳時(shí)間: 2013-10-14
上傳用戶:戀天使569
小波程序,包含小波分解和小波重構(gòu),供大家參卡!
標(biāo)簽: 程序
上傳時(shí)間: 2015-05-11
上傳用戶:sjyy1001
基于小波變換的圖像壓縮方法的源代碼,內(nèi)容主要是小波分解,重構(gòu)
標(biāo)簽: 小波變換 圖像壓縮 源代碼
上傳時(shí)間: 2015-06-11
上傳用戶:sy_jiadeyi
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1