遙感圖像是深空探測和近地觀測所得數據的重要載體,在軍事和社會經濟生活領域發揮著重要作用。由于遙感圖像數據量巨大,它的存儲和傳輸已成為遙感信息應用中的關鍵問題。圖像壓縮編碼技術能降低圖像冗余度,從而減小圖像的存儲容量和傳輸帶寬,它的研究對于遙感圖像應用具有重要的現實意義。CCSDS圖像壓縮算法是空間數據系統咨詢委員會(CCSDS)提出的圖像數據壓縮算法。該算法復雜度較低,并行性好,適合于硬件實現,能實現對空間數據的實時處理,從而廣泛應用于深空探測和近地觀測。對于直接關系到軍事戰略、經濟建設等方面的遙感圖像的傳輸,必須對它進行加密處理。AES加密算法是由美國國家標準和技術研究所(NIST)于2000年發布的數據加密標準,它不但能抵抗各種攻擊,保證加密數據的安全性,而且易于軟件和硬件實現。本論文對CCSDS圖像壓縮算法和AES加密算法進行了研究,完成的主要工作包括: (1)研究了CCSDS圖像壓縮算法的原理和結構,用C語言實現了算法的編解碼器,并與SPIHT算法和JPEG2000算法的性能進行了比較。 (2)研究了AES加密算法的原理和結構,用C語言實現了算法的加解密器。 (3)介紹了實現CCSDS圖像壓縮算法和AES加密算法的FPGA設計所選擇的軟件開發工具、開發語言和硬件開發平臺。 (4)給出了CCSDS編碼器的FPGA實現方法和實現性能。 (5)給出了AES加密器的FPGA實現方法和實現性能。 本文設計的CCSDS圖像壓縮和AES加密FPGA系統運用了流水線設計、高速內存設計、模塊并行化設計和模塊串行化設計等技術,在系統速度和資源面積上取得了較好的平衡,達到了預期的設計目的。
上傳時間: 2013-07-15
上傳用戶:dylutao
隨著人們對于數字視頻和數字圖像的需求越來越大,數字電視廣播和手機電視迅速發展起來,但是人們對于數字圖像質量的要求也越來越高。對于觀眾來講,畫面的質量幾乎是最為重要的,然而由于信道傳輸特性不理想和加性噪聲的影響,不可避免地會產生誤碼,導致圖像質量的下降,甚至無法正常收看。因此,為了保障圖像質量就需要采用糾錯編碼(又稱信道編碼)的方式來實現通信。在數字視頻廣播系統(DVB)中,無論是衛星傳輸,電纜傳輸還是地面傳輸都采用了信道編碼。 本文首先深入研究DVB標準中的信道編碼部分的關鍵技術;然后依照DVB-T標準技術要求,設計并硬件實現了數字視頻傳輸的信道編解碼系統。在該系統中,編解碼器與信源端的接口利用了MPEG-2的視頻傳輸接口同步并行接口(SPI),這種接口的應用讓系統具有很強的通用性;與信道端接口采用了G.703接口,具有G.703接口功能和特性的數據通信設備可以直接與數字通信設備連接,這使得應用時對于信道的選擇具有較大的靈活性。 在深入理解RS編解碼算法,卷積交織/解交織原理,卷積編碼/VITERBI譯碼算法原理的基礎上,本文給出了解碼部分的設計方案,并利用Xilinx公司的SpartanⅢ系列XC3S2000芯片完成方案的硬件實現。在RS解碼過程中引入了流水線機制,從而很大程度上提高了解碼效率。解交織器部分采用了RAM分區循環法,利用對RAM讀寫地址的控制實現解卷積交織,這種方法控制電路簡單,實現速度比較快,代價小。VITERBI譯碼器采用截尾譯碼,在幾乎不影響譯碼準確度的基礎上大大提高了解碼效率。
上傳時間: 2013-07-16
上傳用戶:372825274
2000年10月2日,美國國家標準與技術研究所宣布采用Rijndael算法作為高級加密標準,并于2002年5月26日正式生效,AES算法將在今后很長一段時間內,在信息安全中扮演重要角色。因此,對AES算法實現的研究就成為了國內外的熱點,會在信息安全領域得到廣泛的應用。用FPGA實現AES算法具有快速、靈活、開發周期短等優點。 本論文就是針對AES加、解密算法在同一片FPGA中的優化實現問題,在深入分析了AES算法的整體結構、基本變換以及加、解密流程的基礎上,對AES算法的加、解密系統的FPGA優化設計進行了研究。主要內容為: 1.確定了實現方案以及關鍵技術,在比較了常用的結構后,采用了適合高速并行實現AES加、解密算法的結構——內外混合的流水線結構,并給出了總體的設計框圖。由于流水線結構不適用于反饋模式,為了達到較高的運算速度,該系統使用的是電碼本模式(ECB)的工作方式; 2.對各個子模塊的設計分別予以詳細分析,結合算法本身和FPGA的特點,采用查表法優化處理了字節代換運算,列混合運算和密鑰擴展運算。同時,考慮到應用環境的不同,本設計支持數據分組為128比特,密鑰長度為128比特、192比特以及256比特三種模式下的AES算法加、解密過程。完成了AES加、解密算法在同一片FPGA中實現的這個系統的優化設計; 3.利用QLJARTUSII開發工具進行代碼的編寫工作和綜合編譯工作,在 MODELSIM中進行仿真并給出仿真結果,給出了各個模塊和整個設計的仿真測試結果; 4.和其他類似的設計做了橫向對比,得出結論:本設計在保證了速度的基礎上實現了資源和速度的均衡,在性能上具有較大的優勢。
上傳時間: 2013-05-25
上傳用戶:wcl168881111111
該文針對復雜信號實時處理的困難,提出了采用FPGA來實現信號處理的方法,并根據系統需要設計了一個嵌入式實驗平臺.根據FPGA實現信號處理的關鍵點:設計合理的FPGA結構,體現算法的并行性和流水性,論文著重分析了用FPGA實現陣列結構處理的具體方法和實現過程.論文從分析算法的并行度入手,提出用相關圖方法直觀反映算法的相關性,在此基礎上設計了算法的信號流圖結構和脈動陣列結構.并針對典型信號處理算法(矩陣運算、卷積運算)進行了并行度分析,相關圖設計和從相關圖導出脈動陣列結構的研究.同時針對FPGA特點,提出了采用CORDIC結構來設計通用運算單元,給出其流水實現的結構,結合脈動陣列結構提高了矩陣運算性能.最后設計一個以32位CPU為核心的實驗平臺,編寫了啟動程序和診斷程序.
上傳時間: 2013-04-24
上傳用戶:1427796291
本文的目的就是研究如何應用FPGA這種大規模的可編程邏輯器件實現CCD(Charge Coupled Device,電荷耦合器件)數字圖像的實時采集及預處理。基于對實時圖像處理系統的研究與設計,本文主要研究工作及成果如下: 1.本論文詳細的介紹了圖像采集卡的結構和基本工作原理。同時,針對高分辨率的CCD攝像機,探討了有關點目標與CCD像元一一對應的圖像采集及其硬件和軟件設計方法。 2.本文分析了星圖中弱小目標、噪聲以及背景的特點,給出了點目標的場景圖像的數學模型及復雜背景下點目標檢測的預處理方法。針對星圖灰度分布的特點,采用高斯低通濾波算法和高通濾波算法對星圖進行預處理,同時還對圖像掃描聚類算法進行了研究與分析。 3.數字信號處理器常常因為在復雜性、運算速度等方面的限制,難以實時的實現復雜的檢測算法。本文采用FPGA技術,實現了復雜背景下弱點目標的預處理算法,解決了計算、數據緩沖和存儲操作協調一致的問題,同時采用并行高密度加法器和流水線的工作方式,使整個系統的數據交換和處理速度得以很大的提高,合理的解決了資源和速度之間的相互制約問題,并在實際中取得滿意的結果。
上傳時間: 2013-07-03
上傳用戶:wang5829
AES是美國于2000年10月份確立的高級加密標準,該標準的反饋鏈路模式AESCBC加密算法,用于在IPSec中替代DESCBC和3DESCBC。 加密是安全數據網絡的關鍵,要保證在公眾網上傳輸的信息不被竊取和偷聽,必須對數據進行加密。在不影響網絡性能的前提下,快速實現數據加密/解密,對于開發高性能的安全路由器、安全網關等對數據處理速度要求高的通信設備具有重要的意義。 在目前可查詢的基于FPGA技術實現AESCBC的設計中,最快的加/解密速度達到700Mbps/400MHZ。商用CPU奔騰4主頻3.06,用匯編語言編寫程序,全部資源用于加密解密,最快的加密解密速度可以達到1.4Gbps。但根據國外測試結果表明,即使開發的路由器本身就基于高性能的雙64位MIPS網絡處理器,軟件加密解決方案僅能達到路由器所要求的最低吞吐速率600Mbps。 本文首先研究分析了目前幾種實現AESCBC的方法有缺點的情況下,在深入研究影響硬件快速實現AESCBC難點基礎上,設計出一種適應于報文加密解密的硬件快速實現AESCBC的方案,在設計中采用加密解密和密鑰展開并行工作,實現了在線提供子密鑰。在解密中采用了雙隊列技術,實現了報文解密和子密鑰展開協調工作,提高了解密速度。 本文在quartus全面仿真設計方案的基礎上,全面驗證了硬件實現AESCBC方案的正確性,全面分析了本設計加密解密的性能。并且針對設計中的流水線效率低的問題,提出改善流水線性能的方案,設計出報文級并行加密解密方案,并且給出了硬件實現VPN的初步方案。實現了單一模塊加密速度達到1.16Gbps,單一模塊解密速度達到900Mbps,多個模塊并行工作加密解密速度達到6.4Gbps。 論文最后給出了總結與展望。目前實現的AESCBC算法,只能通過仿真驗證其功能的正確性,還需要下載到芯片上做進一步的驗證。要用硬件實現整個IPSec,還要進一步開發基于FPGA的技術。總之,為了適應路由器發展的需求,還有很多技術需要研究。
上傳時間: 2013-05-29
上傳用戶:wangzhen1990
加密算法一直在信息安全領域起著無可替代的作用,它直接影響著國家的未來和發展.隨著密碼分析水平、芯片處理能力和計算技術的不斷進步,原有的數據加密標準(DES)算法及其變形的安全強度已經難以適應新的安全需要,其實現速度、代碼大小和跨平臺性均難以繼續滿足新的應用需求.在未來的20年內,高級加密標準(AES)將替代DES成為新的數據加密標準.高級加密標準算法是采用對稱密鑰密碼實現的分組密碼,支持128比特分組長度及128比特、192比特與256比特可變密鑰長度.無論在反饋模式還是在非反饋模式中使用AES算法,其軟件和硬件對計算環境的適應性強,性能穩定,密鑰建立時間優良,密鑰靈活性強.存儲需求量低,即使在空間有限的環境使用也具備良好的性能.在分析高級加密標準算法原理的基礎上,描述了圈變換及密鑰擴展的詳細編制原理,用硬件描述語言(VHDL)描述了該算法的整體結構和算法流程.詳細論述了分組密碼的兩種運算模式(反饋模式和非反饋模式)下算法多種體系結構的實現原理,重點論述了基本體系結構、循環展開結構、內部流水線結構、外部流水線結構、混合流水線結構及資源共享結構等.最后在XILINX公司XC2S300E芯片的基礎上,采用自頂向下設計思想,論述了高級加密標準算法的FPGA設計方法,提出了具體模塊劃分方法并對各個模塊的實現進行了詳細論述.圈變換采用內部流水線結構,多個圈變換采用資源共享結構,密鑰調度與加密運算并行執行.占用芯片面積及引腳資源較少,在芯片選型方面具有很好的適應性.
上傳時間: 2013-06-20
上傳用戶:fairy0212
隨著安全通信數據速率的提高,關鍵數據加密算法的軟件實施成為重要的系統瓶頸.基于FPGA的高度優化的可編程的硬件安全性解決方案提供了并行處理能力,并且可以達到所要求的加密處理性能(每秒的SSL或RSA運算次數)基準.網絡的迅速發展,對安全性的需要變得越來越重要.然而,盡管網絡技術進步很快,安全性問題仍然相對落后.由于FPGA所提供的設計優勢,特別是新的高速版本,網絡系統設計人員可以在這些網絡設備中經濟地實現安全性支持.FPGA是實現設計靈活性和功能升級的關鍵,對于容錯、IPSec協議和系統接口問題而言這兩點非常重要.而且,FPGA還為網絡系統設計人員提供了適應不同安全處理功能以及隨著安全技術的發展方便地增加對新技術支持的能力.標準加密/解決以及認證算法,如RC-4、DES、三次DES、MD-5以及安全哈希算法-1(SHA-1)被廣泛用于全球網絡安全系統中.本文介紹了基于PCI總線的加密卡的研制,硬件板卡的結構,著重論述了加密卡上加密模塊的實現,即用FPGA實現3DES及IDEA、MD5算法的過程,加密卡的工作原理,加密卡中多種密碼算法的配置原理,最后對3DES算法及IDEA、MD5算法的實現進行仿真,并繪制了板卡的原理圖,對PCI接口原理進行了闡述.在論文中,首先闡述了數據加密原理.介紹了數據加密的算法和數據加密的技術發展趨勢,并重點說明了3DES的算法.由于加密卡的生存空間在于其高速的加密性能與便捷的使用方式,所以,我們的加密卡采用的是基于PCI插槽的結構,遵從的是PCI2.2規范,理解并掌握PCI總線的規范是了解整個系統的重要一環,本文講述了PCI總線的特點和性能,以及總線的信號.由于遵從高速性的要求,我們在硬件選型的時候,選用的是TI公司高速DSP T M S 3 2 0 C 5 4 x:T I公司新推出的T M S 3 2 0 C 6 x系列D S P功能強,速度也非常快,但目前價格仍然太高,不適合一般加解密使用.而TMS3 2 0 C 5 4 x系列具有性能適中,價格低廉,產品成熟等特點,是較好的選擇.FPGA選用的XILINX公司的XC2V3000,在隨后的文章中,我們將會對這些器件特性做相應說明.并由此得出電路原理圖的繪制.文章的重點之一在于3DES算法及IDEA、MD5算法的FPGA實現,以Xilinx公司VIRTEXII結構的VXC2V3000為例,闡述用FPGA高速實現3DES算法及IDEA、MD5算法的設計要點及關鍵部分的設計.
上傳時間: 2013-04-24
上傳用戶:qazwsc
目前,以互聯網業務為代表的網絡應用,正快速地向包括數據、語音、圖像的綜合寬帶多媒體方向發展,構建寬帶化、大容量、全業務、智能化的現代通信網絡已成為大勢所趨.寬帶無線接入(BWA)憑借其組網快速靈活、運營維護方便及成本較低等競爭優勢,迅速成為市場熱點,各種微波、無線通信領域的先進手段和方法不斷引入,各種寬帶無線接入技術迅速涌現.由于BWA要用于非視距傳輸,所以必須考慮無線信道的多經效應.而OFDM技術憑借著魯棒的對抗頻率選擇性衰落能力和極高頻譜效率引起了學術界和工業界的高度重視.其基本思想是把調制在單載波上的高速串行數據流,分成多路低速的數據流,調制到多個正交載波上并行傳輸,這樣在傳輸時,雖然整個信道是頻率選擇性衰落,但是各個子信道卻是平坦衰落,有效對抗了多經效應,同時由于各個子載波是正交的,極大提高了頻譜效率.可以預料的是,隨著通信系統將向基于IPv6核心網的全IP包的傳輸方向發展,越來越多的通信系統將具有"突發模式"的特征.本文關注的正是突發OFDM系統接收機設計和實現.由于IEEE 802.11a無線局域網是OFDM技術第一次真正的應用于突發系統,實現了面向IP的無線寬帶傳輸,所以基于IEEE 802.11a的突發OFDM系統有著重要的借鑒和研究價值,本文也正是圍繞著這個中心而展開.本文的各章節安排如下:在第一章中主要介紹OFDM的技術原理和在寬帶無線接入中的應用,同時引出本文所關注的突發OFDM接收機設計.在第二章中先介紹了相干接收和信道估計的概念,重點分析了本文所采用的WLAN信道模型和信道估計算法,然后在得到同步誤差表達式的基礎上,先用星座圖直觀的表現OFDM系統中各種同步誤差的影響,再從信噪比損失的角度對符種同步誤差進行分析.第三章是本文的重點之一,在本章中對基于IEEE 802.11a的各種同步算法包括幀檢測和符號定時、載波同步和采樣時鐘同步進行仿真和比較,并針對適合FPGA實現的同步算法進行了重點的分析.第四章也是本文的重點之一,提出了整個OFDM系統平臺的硬件結構和基于IEEE 802.11a的接收機FPGA設計方案,然后從整體上介紹了接收機的實現結構,并給出了接收機各個模塊的具體設計,最后對整個系統調試過程和測試結果進行了分析.
上傳時間: 2013-04-24
上傳用戶:zhoujunzhen
本文從AES的算法原理和基于ARM核嵌入式系統的開發著手,研究了AES算法的設計原則、數學知識、整體結構、算法描述以及AES存住的優點利局限性。 針對ARM核的體系結構及特點,對AES算法進行了優化設計,提出了從AES算法本身和其結構兩個方面進行優化的方法,在算法本身優化方面是把加密模塊中的字節替換運算、列混合運算和解密模塊中的逆列混合運算中原來的復雜的運算分別轉換為簡單的循環移位、乘和異或運算。在算法結構優化方面是在輸入輸山接口上采用了4個32位的寄存器對128bits數據進行了并行輸入并行輸出的優化設計;在密鑰擴展上的優化設計是采用內部擴展,即在進行每一輪的運算過程的同時算出下一輪的密鑰,并把下一輪的密鑰暫存在SRAM里,使得密鑰擴展與加/解密運算并行執行;加密和解密優化設計是將輪函數查表操作中的四個操作表查詢工作合并成一個操作表查詢工作,同時為了使加密代碼在解密代碼中可重用,節省硬件資源,在解密過程中采用了與加密相一致的過程順序。 根據上述的優化設計,基于ARM核嵌入式系統的ADS開發環境,提出了AES實現的軟硬件方案、AES加密模塊和解密模塊的實現方案以及測試方案,總結了基于ARM下的高效編程技巧及混合接口規則,在集成開發環境下對算法進行了實現,分別得出了初始密鑰為128bits、192bits和256bits下的加密與解密的結果,并得劍了正確驗證。在性能測試的過程中應用編譯器的優化選項和其它優化技巧優化了算法,使算法具有較高的加密速度。
上傳時間: 2013-04-24
上傳用戶:liansi