內容簡介: 物聯網被認為是下一個巨大的機遇,隨著物聯網的發展,現在支持IP的嵌入式設備的數量也正在迅速增加,而6LoWPAN(面向低功耗無線局域網的IPv6)正是其中非常關鍵的技術。 本書詳細和完整地介紹了6LoWPAN協議標準本身、應用、相關標準以及網絡部署和協議實現上的各種設計。 使讀者能全面地領略到基于IPv6的、低功耗的和將來基于移動無線網絡的設計、配置和運行。 本書適合物聯網行業的研發人員、網絡工程師、相關技術人員以及相關院校計算機、電子工程和信息工程專業的高年級本科生、碩士/博士研究生閱讀,幫助其對6LoWPAN協議標準的了解,同時有利于推動物聯網在我國的蓬勃發展。部分目錄: 第1章簡介1 1.1無線嵌入式物聯網2 1.1.1為什么使用6LoWPAN?4 1.1.26LoWPAN的歷史和標準化5
上傳時間: 2022-05-11
上傳用戶:1208020161
用的是沁恒CH552e淘寶買的評估板,USB中斷上傳程序用的是沁恒提供的做了些修改。程序使用2個端點一個,端點1作為普通鍵盤,端點2作為多媒體按鍵,有詳細注釋多媒體按鍵報告,以下是主函數內容。/****主函數****/main(){ CfgFsys( ); //CH552時鐘選擇配置 mDelaymS(5); //修改主頻等待內部晶振穩定,必加 ConfigT0(2); //配置2ms T0中斷 USBDeviceInit(); //USB設備模式初始化 EA = 1; //允許單片機中斷 UEP1_T_LEN = 0; //預使用發送長度一定要清空 UEP2_T_LEN = 0; //清空端點2發送長度 FLAG = 0; //清空USB中斷傳輸完成標志 Ready = 0; LED_VALID = 1; //給一個默認值 P1_DIR_PU &= 0xE0; //在MOD_OC為0時 p1.5 p1.6 P1.7為推挽輸出 P1_MOD_OC = P1_MOD_OC & ~0xE0; //3個口的bit4 = 0 p1.5 p1.6 P1.7設置為推挽輸出 P1_DIR_PU = P1_DIR_PU | 0xE0; //3個口的bit4 = 1 p1.5 p1.6 P1.7設置為輸出 key1 = 1; key2 = 1; key3 = 1; while(1) { KeyDrive(); //按鍵驅動 }}
上傳時間: 2022-05-15
上傳用戶:
VREM EmXpert 是一款專業的復雜電磁環境數字仿真平臺。該平臺具有戰場復雜電磁環境及作戰單元的建模與仿真推演能力,以高精度的地理信息系統(GIS)為基礎,結合專業的電波傳播預測模型,可以構建特定作戰場景中雷達、通信、電子戰等電子信息系統面臨的電磁環境,評估復雜電磁環境下裝備的作戰效能;結合內場或外場的實驗條件和硬件設備,還能產生與實際作戰環境相似的電磁環境場景,為裝備的研發和測試提供支撐。
標簽: 電磁環境
上傳時間: 2022-05-27
上傳用戶:默默
干貨-Altium Designer20 高效實用4層PCB視頻課程+配套練習文件altium designer20是一款PCB設計軟件,主要的功能就是幫助用戶設計電路,這款軟件的功能還是非常優秀的,可以直接在軟件界面新建原理圖,通過軟件提供的電路設計工具以及相關的電子元件就可以快速設計原理圖,您可以在軟件設計PCB,可以在軟件查看CAM文檔,可以新建輸出項目,也支持元件查看,也支持腳本文件編輯,支持混合信號仿真等功能軟件功能 1、強勁的設計規則驅動 通過設計規則,您可以定義設計要求,這些設計要求共同涵蓋設計的各個方面。 2、智能元器件擺放 使用Altium Designer中的直觀對齊系統可快速將對象捕捉到與附近對象的邊界或焊盤相對齊的位置。 在遵守您的設計規則的同時,將元件推入狹窄的空間。 3、交互式布線 使用Altium Designer的高級布線引擎,在很短的時間內設計出最高質量的PCB布局布線,包括幾個強大的布線選項,如環繞,推擠,環抱并推擠,忽略障礙,以及差分對布線。 4、原生3D PCB設計 使用Altium Designer中的高級3D引擎,以原生3D實現清晰可視化并與您的設計進行實時交互。 5、高速設計 利用您首選的存儲器拓撲結構,為特定應用快速創建和設計復雜的高速信號類,并輕松優化您的關鍵信號。
標簽: Altium Designer
上傳時間: 2022-06-04
上傳用戶:bluedrops
居家隔離監管方案采用的是存在性檢測的被動定位方式,一方面在隔離居民的家中安裝4G藍牙網關,并為隔離人員佩戴防拆卸定位手環,將隔離空間設置為安全范圍,實時了解居家隔離人員的位置信息及心率數據,一旦隔離人員離開安全范圍或心率異常、剪斷定位手環、SOS求救,便能觸發后臺的安全報警,一鍵告警,推送到防控人員的手機上。
上傳時間: 2022-06-05
上傳用戶:shjgzh
首先介紹一下原理,其實很簡單,磁力對懸浮物的控制,其基本原理是:霍爾傳感器在浮子的正下方,當檢測到浮子向左運動時,兩邊的線圈一個吸一個拉,把它推向右;反之如果浮子想右運動,那么兩個線圈的電流都反向,總共兩組共四個這樣的線圈,就可以把浮子限制在二維平面之內了。但是線圈產生的力是比較小的,因此只能夠推動浮子在水平面移動,要克服浮子的重力讓它懸浮起來,就要在四個線圈下面再加一個大的環形磁鐵提供斥力。為了讓懸浮更加穩定,我們采用了PID控制的平衡算法,對PID算法的了解有助于我們對整個實驗原理的理解,借用網上對PID的一段介紹:在工程實際中,PID控制是應用最為廣泛的調節器控制機制。PID控制中得P代表比例,即proportion;I代表積分,即integral;D代表微分,即differential;因此,PID控制,即比例-積分-微分控制。當被控對象的結構和參數不能完全掌握,或者得不到精確的數學模型時,其他的控制方法難以采用,那么控制器的結構和參數必須結合經驗和現場調試來決定,在這種情況下采用PID調節最為方便。首先,比例控制是一種最簡單的控制方式,就像胡克公式中的比例系數一樣,當控制器的輸出與輸入信號成比例關系,那么就可以得到一個比例系數。其次,積分控制是指控制器的輸出與輸入的誤差信號的積分有關。就如同電路中的電感元件,某個時刻的電壓與電流的積分有關。類似的,有時候信號的輸出必須綜合之前信號的輸入,而這種綜合往往是求和關系,因此使用積分控制簡單易行。最后,微分控制是指控制器的輸出與輸入信號的微分有關。最簡單的微分關系就是速度是位矢的微分。我們在控制懸浮物的平衡時,光知道懸浮物偏離平衡位置的位移從而采用比例控制是不夠的,對于同樣的偏離位移,懸浮物可能有不同的速度,那么要求我們對懸浮物有不同的處理方法,而恰恰速度是位矢的微分,于是我們可以通過對位移輸入數據進行微分操作,來實現對懸浮物的精確實時控制。可見,PID控制器是一種那個動態的控制機制。 以上就是實現下推式磁懸浮的基本原理,借助以上的基本原理,結合一定的軟件算法實現,我們就可以對懸浮物進行動態控制。
上傳時間: 2022-06-07
上傳用戶:canderile
一、 實驗目的使用 51單片機的八位數碼管順序顯示自己的學號。掌握 C 語言、匯編語言兩種編程單片機控制程序的方法。掌握使用 Keil 4 或 Keil 5 軟件編寫、編譯、調試程序的方法。掌握使用 Proteus 軟件繪制電路原理圖、硬件仿真和程序調試。二、實驗設備筆記本電腦51 單片機(普中科技)八位數碼管(單片機上已集成)應用程序:Proteus 8.0、Keil uVision5、stc-isp-v6.88E三、實驗原理(1)數碼管數碼管按段數可分為七段數碼管和 8 段數碼管,八段數碼管比七段數碼管多一個發光二極管單元,也就是多一個小數點(DP),這個小數點可以更精確的表示數碼管想要顯示的內容。按能顯示多少個(8),可分為 1 位、2位、3位、4位、5 位、6位、7 位等數碼管。按發光二極管單元連接方式可分為共陽極數碼管和共陰極數碼管。共陽數碼管是指將所有發光二極管的陽極接到一起形成公共陽極(COM)的數碼管,共陽數碼管在應用時將公共極 COM 接到+5V,當某一字段發光二極管的陰極為低電平時,相應字段就點亮,當某一字段的陰極為高電平時,相應字段就不亮。共陰數碼管是指將所有發光二極管的陰極接到一起形成公共陰極(COM)的數碼管,共陰數碼管在應用時應將公共極 COM 接到地線 GND上,當某一字段發光二極管的陽極為高電平時,相應字段就點亮,當某一字段的陽極為低電平時,相應字段就不亮。(2)51單片機單片機(Microcontrollers)是一種集成電路芯片,是采用超大規模集成電路技術把具有數據處理能力的中央處理器 CPU、隨機存儲器 RAM、只讀存儲器ROM、多種 I/O口和中斷系統、定時器/計數器等功能集成到一塊硅片上構成的一個小而完善的微型計算機系統,在工業控制領域廣泛應用。MSC-51 單片機指以 8051為核心的單片機,由美國的 Intel 公司在 1980 年推出,80C51 是 MCS-51系列中的一個典型品種;其它廠商以 8051為基核開發出的CMOS 工藝單片機產品統稱為 80C51 系列。本實驗中我使用普中科技的 51 單片機來點亮八位數碼管并使其顯示我的學號(20198043)。四、 實驗 過程(1)熟悉數碼管使用 Proteus 軟件構建電路圖,學會如何點亮數碼管,熟悉如何使數碼管顯示不同的數字(0-9)。我們可以按照上面的原理圖讓對應的段導通,以顯示數字。對于共陽數碼管,若顯示數字 0,可以讓標號為 A,B,C,D,E,F 的段導通,標號為 G,H 的段不導通,然后將陽極通入高電壓,即顯示數字 0。代碼舉例如下:最后效果如下,成功點亮一個數碼管。經過更多嘗試和學習,學會使多位數碼管顯示多位數字。結果舉例如下:(2)多位數碼管顯示學號為了顯示我們學號,就不能只使用一位數碼管,需要使用八位數碼管,相較于單位數碼管,多位數碼管更加復雜,驅動函數有很大區別。多位數碼管使用同一組段選,不同的位選,因此就不能夠一對一地固定顯示,這就需要動態掃描。動態掃描:利用人眼視覺暫留,多位數碼管每次只顯示一位數字,但是切換頻率大于 200HZ(50 × 4),這樣就能讓人產生同時顯示多個數字的錯覺。具體操作是輪流向數碼管送字形碼和相應的位選。一個完整的驅動程序不只以上這些,一個完整的數碼管驅動有 6部分:1. 碼表(ROM):存儲段碼(一般放在 ROM中,節省 RAM空間),例如數字 0的段碼就是 0xC0,碼表則包含 0-9的段碼2. 顯存(RAM):保存要顯示的數字,取連續地址(便于查表)3. 段選賦值:通過查表(碼表)操作,將顯存映射到段碼4. 位選切換:切換顯示的位置5. 延時:顯示的數字短暫保持,提升亮度6. 消影:消除切換時不同位置互相影響而產生的殘影
上傳時間: 2022-06-08
上傳用戶:canderile
隨著新理論、新器件、新技術的不斷出現或成熟,功率超聲技術在國民經濟各個部門中日益廣泛應用。超聲波電源為超聲波換能器提供電能,超聲波換能器將電能轉換為動能,完成超聲波清洗、防垢除垢等功能。本文主要對高頻超聲波電源進行了理論分析與設計。 首先對超聲波電源基本拓撲結構進行了分析,提出了超聲波電源功放電路可以采用的三種方案:半橋功率放大電路、全橋功率放大電路、推挽功率放大電路。通過對比分析了各種方案的優點和缺點,確定了超聲波電源功率放大電路的方案。針對超聲波電源的具體要求,設計了整流濾波電路,功率放大電路、驅動電路、緩沖電路、功率反饋電路、保護電路。其中,給出了整流濾波電路和功率放大電路的參數計算。 其次對超聲波換能器的特性進行了分析,介紹了超聲波換能器的串聯諧振頻率和并聯諧振頻率。然后對幾種常用的匹配網絡進行了分析,包括單個電感的匹配、電感-電容匹配、改進的電感-電容匹配,分析了其優點和缺點。 然后由于超聲波電源需具有性能高、功率大、成本低的特點,要求能較好適應超聲波換能器阻抗變化、頻率漂移等所帶來的疑難問題。本文介紹了超聲波電源幾種常見的頻率跟蹤方案。本文研究的是一種傳統的自激式超聲波電源,串聯諧振頻率在20KHz左右,頻率跟蹤采用負載分壓式反饋系統,在以前手動調節電感的基礎上,通過在反饋回路添加通過AVR單片機控制數字電感來跟蹤超聲波換能器的諧振頻率,易操作,能穩定運行。 最后在理論設計的基礎上,對超聲波電源各個組成電路進行了實際制作,在超聲波電源與超聲波換能器匹配無誤、工作穩定后,對有關電路進行了現場試驗驗證。實驗結果表明,該超聲波電源具有一定的使用價值。
上傳時間: 2022-06-08
上傳用戶:
微型太陽能無線傳感器節點開發資料無線傳感器節點可通過縮減傳感器尺寸、簡化維護問題和延長電池續航時間而降低實施成本。事實上,如果把重點集中在無電池的設計上,將能實現更大的成本效益。 設計無電池設備的最好方法是通過用于通信和能量采集的低功耗藍牙(BLE)等技術來降低無線傳感器系統的平均功耗。BLEBLE的優化為了做到只用能量采集IC所提供的電源運行,傳感器必須優化其BLE系統以降低功耗。首先,設計人員必須了解BLE子系統的詳情。接下來,需要編寫固件代碼以滿足每種運行/功率模式的要求。然后,設計人員必須分析實際功耗以確認各種假設來進一步提升系統的能效。 降低功耗技術的說明可參考賽普拉斯(Cypress) CYALKIT-E02太陽能供電BLE傳感器參考設計套件(RDK)。該RDK包含一個Cypress PSoC 4 BLE與S6AE10xA能量采集電源管理IC(PMIC)。 簡單、無功率優化的BLE設計要首先把BLE射頻配置為處于不可連接廣播模式的信標。BLE信標是每隔一定時間向外進行廣播的單向通信方法。它包含一些較小的數據包(30字節),而這些數據包構成一個廣播數據包發送出去。想信標被發現可在各類智能手機或計算機應用中推送消息、app操作及提示。
上傳時間: 2022-06-08
上傳用戶:
1.1 什么是整流電路整流電路(rectifying circuit)把交流電能轉換為直流電能的電路。大多數整流電路由變壓器、整流主電路和濾波器等組成。它在直流電動機的調速、發電機的勵磁調節、電解、電鍍等領域得到廣泛應用。整流電路通常由主電路、濾波器和變壓器組成,20世紀70年代以后,主電路多用硅整流二極管和晶閘管組成。濾波器接在主電路與負載之間,用于濾除脈動直流電壓中的交流成分。變壓器設置與否視具體情況而定。變壓器的作用是實現交流輸入電壓與直流輸出電壓間的匹配以及交流電網與整流電路之間的電隔離。可以從各種角度對整流電路進行分類,主要的分類方法有:按組成的期間可分為不可控,半控,全控三種;按電路的結構可分為橋式電路和零式電路:按交流輸入相數分為單相電路和多相電路;按變壓器二次側電流的方向是單向還是雙向,又可分為單拍電路和雙拍電路1.2整流電路的發展與應用電力電子器件的發展對電力電子的發展起著決定性的作用,因此不管是整流器還是電力電子技術的發展都是以電力電子器件的發展為綱的,1947年美國貝爾實驗室發明了晶體管,引發了電子技術的一次革命:1957年美國通用公司研制了第一個品閘管,標志著電力電子技術的誕生:70年代后期,以門極可關斷晶閘管(GTO)、電力雙極型晶體管(BJT)和電力場效應晶體管(power-MOSFET)為代表的全控型器件迅速發展,把電力電子技術推上一個全新的階段:80年代后期,以絕緣極雙極型品體管(IGBT)為代表的復合型器件異軍突起,成為了現代電力電子技術的主導器件。另外,采用全控型器件的電路的主要控制方式為PWM脈寬調制式,后來,又把驅動,控制,保護電路和功率器件集成在一起,構成功率集成電路(PIC),隨著全控型電力電子器件的發展,電力電電路的工作頻率也不斷提高。同時。電力電子器件的開關損耗也隨之增大,為了減小開關損耗,軟開關技術便應運而生,零電壓開關(ZVS)和零電流開關(ZCS)把電力電子技術和整流電路的發展推向了新的高潮。
標簽: 整流電路
上傳時間: 2022-06-18
上傳用戶: