Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
程序名:ga_bp_predict.cpp 描述: 采用GA優化的BP神經網絡程序,用于單因素時間 序列的預測,采用了單步與多步相結合預測 說明: 采用GA(浮點編碼)優化NN的初始權值W[j][i],V[k][j],然后再采用BP算法 優化權值
標簽: ga_bp_predict cpp 程序 BP神經網絡
上傳時間: 2014-02-18
上傳用戶:冇尾飛鉈
動態規劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會懷疑這道題的后效性而放棄動規做法。 本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001 div 2]...) 無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗…… 反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)
上傳時間: 2014-07-16
上傳用戶:libinxny
function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent for U max_iter = 100 % Max. iteration min_impro =1e-5 % Min. improvement c=3 [center, U, obj_fcn] = fcm(data, c) for i=1:max_iter if F(U)>0.98 break else w_new=eye(in_n,in_n) center1=sum(center)/c a=center1(1)./center1 deta=center-center1(ones(c,1),:) w=sqrt(sum(deta.^2)).*a for j=1:in_n w_new(j,j)=w(j) end data1=data*w_new [center, U, obj_fcn] = fcm(data1, c) center=center./w(ones(c,1),:) obj_fcn=obj_fcn/sum(w.^2) end end display(i) result=zeros(1,data_n) U_=max(U) for i=1:data_n for j=1:c if U(j,i)==U_(i) result(i)=j continue end end end
標簽: data function Exponent obj_fcn
上傳時間: 2013-12-18
上傳用戶:ynzfm
//Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對于約數:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數條件 對于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對于本題: 1. 篩素數的時候首先會判斷i是否是素數。 根據定義,當 x 是素數時 phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會看prime[j]是否是i的約數 如果是,那么根據上述推導,我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數的積性) 經過以上改良,在篩完素數后,我們就計算出了phi[]的所有值。 我們求出phi[]的前綴和 */
上傳時間: 2016-12-31
上傳用戶:gyq
Instead of finding the longest common subsequence, let us try to determine the length of the LCS. Then tracking back to find the LCS. Consider a1a2…am and b1b2…bn. Case 1: am=bn. The LCS must contain am, we have to find the LCS of a1a2…am-1 and b1b2…bn-1. Case 2: am≠bn. Wehave to find the LCS of a1a2…am-1 and b1b2…bn, and a1a2…am and b b b b1b2…bn-1 Let A = a1 a2 … am and B = b1 b2 … bn Let Li j denote the length of the longest i,g g common subsequence of a1 a2 … ai and b1 b2 … bj. Li,j = Li-1,j-1 + 1 if ai=bj max{ L L } a≠b i-1,j, i,j-1 if ai≠j L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.
標簽: the subsequence determine Instead
上傳時間: 2013-12-17
上傳用戶:evil
經典動態壓縮DP,狀態是f[i][j],表示第i行,以3進制j為狀態。j的位代表一個格子,只能是:0表示第i行和第i - 1行都沒有炮兵,1表示第i行沒有炮兵而第i-1行有炮兵,2表示第i行有炮兵
標簽: 動態
上傳時間: 2014-01-26
上傳用戶:努力努力再努力
設有由n個不相同的整數組成的數列,記為: a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 例如3,18,7,14,10,12,23,41,16,24。 若存在i1<i2<i3< … < ie 且有a(i1)<a(i2)< … <a(ie)則稱為長度為e的不下降序列。如上例中3,18,23,24就是一個長度為4的不下降序列,同時也有3,7,10,12,16,24長度為6的不下降序列。程序要求,當原數列給出之后,求出最長的不下降序列。
上傳時間: 2013-12-14
上傳用戶:tonyshao
嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計 優化1:設計了yyy,即在o(k)計算公式時,當網絡進入平坦區時(<0.0001)學習率加大,出來后學習率又還原 優化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j)
上傳時間: 2014-11-30
上傳用戶:妄想演繹師
My JSP 'TeacherMain.jsp' starting page var $=function(id) { return document.getElementById(id); } function show_menu(num){ for(i=0;i
標簽: C++
上傳時間: 2015-07-03
上傳用戶:xiyuzhu