多路電壓采集系統(tǒng)一、實(shí)驗(yàn)?zāi)康模保煜た删幊绦酒珹DC0809,8253的工作過程,掌握它們的編程方法。2.加深對所學(xué)知識的理解并學(xué)會應(yīng)用所學(xué)的知識,達(dá)到在應(yīng)用中掌握知識的目的。 二、實(shí)驗(yàn)內(nèi)容與要求1.基本要求通過一個(gè)A/D轉(zhuǎn)換器循環(huán)采樣4路模擬電壓,每隔一定時(shí)間去采樣一次,一次按順序采樣4路信號。A/D轉(zhuǎn)換器芯片AD0809將采樣到的模擬信號轉(zhuǎn)換為數(shù)字信號,轉(zhuǎn)換完成后,CPU讀取數(shù)據(jù)轉(zhuǎn)換結(jié)果,并將結(jié)果送入外設(shè)即CRT/LED顯示,顯示包括電壓路數(shù)和數(shù)據(jù)值。2. 提高要求 (1) 可以實(shí)現(xiàn)循環(huán)采集和選擇采集2種方式。(2)在CRT上繪制電壓變化曲線。 三、實(shí)驗(yàn)報(bào)告要求 1.設(shè)計(jì)目的和內(nèi)容 2.總體設(shè)計(jì) 3.硬件設(shè)計(jì):原理圖(接線圖)及簡要說明 4.軟件設(shè)計(jì)框圖及程序清單5.設(shè)計(jì)結(jié)果和體會(包括遇到的問題及解決的方法) 四、總體設(shè)計(jì)設(shè)計(jì)思路如下:1) 4路模擬電壓信號通過4個(gè)電位器提供0-5V的電壓信號。2) 選擇ADC0809芯片作為A/D轉(zhuǎn)換器,4路輸入信號分別接到ADC0809的IN0—IN4通道,每隔一定的時(shí)間采樣一次,采完一路采集下一路,4路電壓循環(huán)采集。3) 利用3個(gè)LED數(shù)碼管顯示數(shù)據(jù),1個(gè)數(shù)碼管用來顯示輸入電壓路數(shù),3個(gè)數(shù)碼管用來顯示電壓采樣值。4) 延時(shí)由8253定時(shí)/計(jì)數(shù)器來實(shí)現(xiàn)。 五、硬件電路設(shè)計(jì)根據(jù)設(shè)計(jì)思路,硬件主要利用了微機(jī)實(shí)驗(yàn)平臺上的ADC0809模數(shù)轉(zhuǎn)換器、8253定時(shí)/計(jì)數(shù)器以及LED顯示輸出等模塊。電路原理圖如下:1.基本接口實(shí)驗(yàn)板部分1) 電位計(jì)模塊,4個(gè)電位計(jì)輸出4路1-5V的電壓信號。2) ADC0809模數(shù)轉(zhuǎn)換器,將4路電壓信號接到IN0-IN3,ADD_A、ADD_B、ADD_C分別接A0、A1、A2,CS_AD接CS0時(shí),4個(gè)采樣通道對應(yīng)的地址分別為280H—283H。3) 延時(shí)模塊,8253和8255組成延時(shí)電路。8255的PA0接到8253的OUT0,程序中查詢計(jì)數(shù)是否結(jié)束。硬件電路圖如圖1所示。 圖1 基本實(shí)驗(yàn)板上的電路圖實(shí)驗(yàn)板上的LED顯示部分實(shí)驗(yàn)板上主要用到了LED數(shù)碼管顯示電路,插孔CS1用于數(shù)碼管段碼的輸出選通,插孔CS2用于數(shù)碼管位選信號的輸出選通。電路圖如圖2所示。
上傳時(shí)間: 2013-11-06
上傳用戶:sunchao524
單片機(jī)系統(tǒng)常用軟件抗干擾措施:可靠性設(shè)計(jì)是一項(xiàng)系統(tǒng)工程,單片機(jī)系統(tǒng)的可靠性必須從軟件、硬件以及結(jié)構(gòu)設(shè)計(jì)等方面全面考慮。硬件系統(tǒng)的可靠性設(shè)計(jì)是單片機(jī)系統(tǒng)可靠性的根本,而軟件系統(tǒng)的可靠性設(shè)計(jì)起到抑制外來干擾的作用。軟件系統(tǒng)的可靠性設(shè)計(jì)的主要方法有:開機(jī)自檢、軟件陷阱(進(jìn)行程序“跑飛”檢測)、設(shè)置程序運(yùn)行狀態(tài)標(biāo)記、輸出端口刷新、輸入多次采樣、軟件“看門狗”等。通過軟件系統(tǒng)的可靠性設(shè)計(jì),達(dá)到最大限度地降低干擾對系統(tǒng)工作的影響,確保單片機(jī)及時(shí)發(fā)現(xiàn)因干擾導(dǎo)致程序出現(xiàn)的錯(cuò)誤,并使系統(tǒng)恢復(fù)到正常工作狀態(tài)或及時(shí)報(bào)警的目的。一、開機(jī)自檢開機(jī)后首先對單片機(jī)系統(tǒng)的硬件及軟件狀態(tài)進(jìn)行檢測,一旦發(fā)現(xiàn)不正常,就進(jìn)行相應(yīng)的處理。開機(jī)自檢程序通常包括對RAM、ROM、I/O口狀態(tài)等的檢測。1 檢測RAM檢查RAM讀寫是否正常,實(shí)際操作是向RAM單元寫“00H”,讀出也應(yīng)為“00H”,再向其寫“FFH”,讀出也應(yīng)為“FFH”。如果RAM單元讀寫出錯(cuò),應(yīng)給出RAM出錯(cuò)提示(聲光或其它形式),等待處理。2 檢查ROM單元的內(nèi)容對ROM單元的檢測主要是檢查ROM單元的內(nèi)容的校驗(yàn)和。所謂ROM的校驗(yàn)和是將ROM的內(nèi)容逐一相加后得到一個(gè)數(shù)值,該值便稱校驗(yàn)和。ROM單元存儲的是程序、常數(shù)和表格。一旦程序編寫完成,ROM中的內(nèi)容就確定了,其校驗(yàn)和也就是唯一的。若ROM校驗(yàn)和出錯(cuò),應(yīng)給出ROM出錯(cuò)提示(聲光或其它形式),等待處理。3 檢查I/O口狀態(tài)首先確定系統(tǒng)的I/O口在待機(jī)狀態(tài)應(yīng)處的狀態(tài),然后檢測單片機(jī)的I/O口在待機(jī)狀態(tài)下的狀態(tài)是否正常(如是否有短路或開路現(xiàn)象等)。若不正常,應(yīng)給出出錯(cuò)提示(聲光或其它形式),等待處理。4 其它接口電路檢測除了對上述單片機(jī)內(nèi)部資源進(jìn)行檢測外,對系統(tǒng)中的其它接口電路,比如擴(kuò)展的E2PROM、A/D轉(zhuǎn)換電路等,又如數(shù)字測溫儀中的555單穩(wěn)測溫電路,均應(yīng)通過軟件進(jìn)行檢測,確定是否有故障。只有各項(xiàng)檢查均正常,程序方能繼續(xù)執(zhí)行,否則應(yīng)提示出錯(cuò)。
標(biāo)簽: 單片機(jī)系統(tǒng) 軟件 抗干擾措施
上傳時(shí)間: 2013-11-02
上傳用戶:名爵少年
當(dāng)拿到一張CASE單時(shí),首先得確定的是能用什么母體才能實(shí)現(xiàn)此功能,然后才能展開對外圍硬件電路的設(shè)計(jì),因此首先得了解每個(gè)母體的基本功能及特點(diǎn),下面大至的介紹一下本公司常用的IC:單芯片解決方案• SN8P1900 系列– 高精度 16-Bit 模數(shù)轉(zhuǎn)換器– 可編程運(yùn)算放大器 (PGIA)• 信號放大低漂移: 2V• 放大倍數(shù)可編程: 1/16/64/128 倍– 升壓- 穩(wěn)壓調(diào)節(jié)器 (Charge-Pump Regulator)• 電源輸入: 2.4V ~ 5V• 穩(wěn)壓輸出: e.g. 3.8V at SN8P1909– 內(nèi)置液晶驅(qū)動(dòng)電路 (LCD Driver)– 單芯片解決方案 • 耳溫槍 SN8P1909 LQFP 80 Pins• 5000 解析度量測器 SN8P1908 LQFP 64 Pins• 體重計(jì) SN8P1907 SSOP 48 Pins單芯片解決方案• SN8P1820 系列– 精確的12-Bit 模數(shù)轉(zhuǎn)換器– 可編程運(yùn)算放大器 (PGIA)• Gain Stage One: Low Offset 5V, Gain: 16/32/64/128• Gain Stage One: Low Offset 2mV, Gain: 1.3 ~ 2.5– 升壓- 穩(wěn)壓調(diào)節(jié)器• 電源輸入: 2.4V ~ 5V• 穩(wěn)壓輸出: e.g. 3.8V at SN8P1829– 內(nèi)置可編程運(yùn)算放大電路– 內(nèi)置液晶驅(qū)動(dòng)電路 – 單芯片解決方案 • 電子醫(yī)療器 SN8P1829 LQFP 80 Pins 高速/低功耗/高可靠性微控制器• 最新SN8P2000 系列– SN8P2500/2600/2700 系列– 高度抗交流雜訊能力• 標(biāo)準(zhǔn)瞬間電壓脈沖群測試 (EFT): IEC 1000-4-4• 雜訊直接灌入芯片電源輸入端• 只需添加1顆 2.2F/50V 旁路電容• 測試指標(biāo)穩(wěn)超 4000V (歐規(guī))– 高可靠性復(fù)位電路保證系統(tǒng)正常運(yùn)行• 支持外部復(fù)位和內(nèi)部上電復(fù)位• 內(nèi)置1.8V 低電壓偵測可靠復(fù)位電路• 內(nèi)置看門狗計(jì)時(shí)器保證程序跳飛可靠復(fù)位– 高抗靜電/栓鎖效應(yīng)能力– 芯片工作溫度有所提高: -200C ~ 700C 工規(guī)芯片溫度: -400C ~ 850C 高速/低功耗/高可靠性微控制器• 最新 SN8P2000 系列– SN8P2500/2600/2700 系列– 1T 精簡指令級結(jié)構(gòu)• 1T: 一個(gè)外部振蕩周期執(zhí)行一條指令• 工作速度可達(dá)16 MIPS / 16 MHz Crystal– 工作消耗電流 < 2mA at 1-MIPS/5V– 睡眠模式下消耗電流 < 1A / 5V額外功能• 高速脈寬調(diào)制輸出 (PWM)– 8-Bit PWM up to 23 KHz at 12 MHz System Clock– 6-Bit PWM up to 93 KHz at 12 MHz System Clock– 4-Bit PWM up to 375 KHz at 12 MHz System Clock• 內(nèi)置高速16 MHz RC振蕩器 (SN8P2501A)• 電壓變化喚醒功能• 可編程控制沿觸發(fā)/中斷功能– 上升沿 / 下降沿 / 雙沿觸發(fā)• 串行編程接口
標(biāo)簽: 單片機(jī) 線路設(shè)計(jì)
上傳時(shí)間: 2013-10-21
上傳用戶:jiahao131
P C B 可測性設(shè)計(jì)布線規(guī)則之建議― ― 從源頭改善可測率PCB 設(shè)計(jì)除需考慮功能性與安全性等要求外,亦需考慮可生產(chǎn)與可測試。這里提供可測性設(shè)計(jì)建議供設(shè)計(jì)布線工程師參考。1. 每一個(gè)銅箔電路支點(diǎn),至少需要一個(gè)可測試點(diǎn)。如無對應(yīng)的測試點(diǎn),將可導(dǎo)致與之相關(guān)的開短路不可檢出,并且與之相連的零件會因無測試點(diǎn)而不可測。2. 雙面治具會增加制作成本,且上針板的測試針定位準(zhǔn)確度差。所以Layout 時(shí)應(yīng)通過Via Hole 盡可能將測試點(diǎn)放置于同一面。這樣就只要做單面治具即可。3. 測試選點(diǎn)優(yōu)先級:A.測墊(Test Pad) B.通孔(Through Hole) C.零件腳(Component Lead) D.貫穿孔(Via Hole)(未Mask)。而對于零件腳,應(yīng)以AI 零件腳及其它較細(xì)較短腳為優(yōu)先,較粗或較長的引腳接觸性誤判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板彎變形,影響測點(diǎn)精準(zhǔn)度,制作治具需特殊處理。5. 避免將測點(diǎn)置于SMT 之PAD 上,因SMT 零件會偏移,故不可靠,且易傷及零件。6. 避免使用過長零件腳(>170mil(4.3mm))或過大的孔(直徑>1.5mm)為測點(diǎn)。7. 對于電池(Battery)最好預(yù)留Jumper,在ICT 測試時(shí)能有效隔離電池的影響。8. 定位孔要求:(a) 定位孔(Tooling Hole)直徑最好為125mil(3.175mm)及其以上。(b) 每一片PCB 須有2 個(gè)定位孔和一個(gè)防呆孔(也可說成定位孔,用以預(yù)防將PCB反放而導(dǎo)致機(jī)器壓破板),且孔內(nèi)不能沾錫。(c) 選擇以對角線,距離最遠(yuǎn)之2 孔為定位孔。(d) 各定位孔(含防呆孔)不應(yīng)設(shè)計(jì)成中心對稱,即PCB 旋轉(zhuǎn)180 度角后仍能放入PCB,這樣,作業(yè)員易于反放而致機(jī)器壓破板)9. 測試點(diǎn)要求:(e) 兩測點(diǎn)或測點(diǎn)與預(yù)鉆孔之中心距不得小于50mil(1.27mm),否則有一測點(diǎn)無法植針。以大于100mil(2.54mm)為佳,其次是75mil(1.905mm)。(f) 測點(diǎn)應(yīng)離其附近零件(位于同一面者)至少100mil,如為高于3mm 零件,則應(yīng)至少間距120mil,方便治具制作。(g) 測點(diǎn)應(yīng)平均分布于PCB 表面,避免局部密度過高,影響治具測試時(shí)測試針壓力平衡。(h) 測點(diǎn)直徑最好能不小于35mil(0.9mm),如在上針板,則最好不小于40mil(1.00mm),圓形、正方形均可。小于0.030”(30mil)之測點(diǎn)需額外加工,以導(dǎo)正目標(biāo)。(i) 測點(diǎn)的Pad 及Via 不應(yīng)有防焊漆(Solder Mask)。(j) 測點(diǎn)應(yīng)離板邊或折邊至少100mil。(k) 錫點(diǎn)被實(shí)踐證實(shí)是最好的測試探針接觸點(diǎn)。因?yàn)殄a的氧化物較輕且容易刺穿。以錫點(diǎn)作測試點(diǎn),因接觸不良導(dǎo)致誤判的機(jī)會極少且可延長探針使用壽命。錫點(diǎn)尤其以PCB 光板制作時(shí)的噴錫點(diǎn)最佳。PCB 裸銅測點(diǎn),高溫后已氧化,且其硬度高,所以探針接觸電阻變化而致測試誤判率很高。如果裸銅測點(diǎn)在SMT 時(shí)加上錫膏再經(jīng)回流焊固化為錫點(diǎn),雖可大幅改善,但因助焊劑或吃錫不完全的緣故,仍會出現(xiàn)較多的接觸誤判。
標(biāo)簽: PCB 可測性設(shè)計(jì) 布線規(guī)則
上傳時(shí)間: 2014-01-14
上傳用戶:cylnpy
PCF8563 是低功耗的CMOS 實(shí)時(shí)時(shí)鐘日歷芯片.它提供一個(gè)可編程時(shí)鐘輸出一個(gè)中斷輸出和掉電檢測器.所有的地址和數(shù)據(jù)通過I2C 總線接口串行傳遞最大總線速度為400Kbits/s 每次讀寫數(shù)據(jù)后內(nèi)嵌的字地址寄存器會自動(dòng)產(chǎn)生增量.2 特性 低工作電流典型值為0.25 A VDD=3.0V Tamb=25 時(shí); 世紀(jì)標(biāo)志; 大工作電壓范圍1.0 5.5V; 低休眠電流典型值為0.25 A(VDD=3.0V,Tamb=25 ); 400KHz 的I2C 總線接口VDD=1.8 5.5V 時(shí); 可編程時(shí)鐘輸出頻率為32.768KHz 1024Hz 32Hz 1Hz; 報(bào)警和定時(shí)器; 內(nèi)部集成的振蕩器電容片內(nèi)電源復(fù)位功能掉電檢測器; I2C 總線從地址讀0A3H 寫0A2H; 開漏中斷引腳
標(biāo)簽: 8563 PCF 實(shí)時(shí)時(shí)鐘 芯片
上傳時(shí)間: 2013-12-16
上傳用戶:liuchee
新版交通燈模組范例代碼、電路原理圖、PCB圖、使用說明書和產(chǎn)品說明書(快速上手)。
上傳時(shí)間: 2013-10-20
上傳用戶:edward_0608
單片機(jī)模糊模糊控制是目前在控制領(lǐng)域所采用的三種智能控制方法中最具實(shí)際意義的方法。模糊控制的采用解決了大量過去人們無法解決的問題,并且在工業(yè)控制、家用電器和各個(gè)領(lǐng)域已取得了令人觸目的成效。本書是一本系統(tǒng)地介紹模糊控制的理論、技術(shù)、方法和應(yīng)用的著作;內(nèi)容包括模糊控制基礎(chǔ)、模糊控制器、模糊控制系統(tǒng)、模糊控制系統(tǒng)的穩(wěn)定性、模糊控制系統(tǒng)的開發(fā)軟件,用單片微型機(jī)實(shí)現(xiàn)模糊控制的技術(shù)和方法,模糊控制在家用電器和工業(yè)上應(yīng)用的實(shí)際例子;反映了模糊控制目前的水平。 單片機(jī)模糊模糊控制目錄 : 第一章 模糊邏輯、神經(jīng)網(wǎng)絡(luò)集成電路的發(fā)展 1.1 模糊邏輯及其集成電路的發(fā)展1.1.1 模糊邏輯的誕生和發(fā)展1.1.2 模糊集成電路的發(fā)展進(jìn)程1.2 神經(jīng)網(wǎng)絡(luò)及其集成電路的發(fā)展1.2.1 神經(jīng)網(wǎng)絡(luò)的形成歷史1.2.2 神經(jīng)網(wǎng)絡(luò)集成電路的發(fā)展1.3 模糊邏輯和神經(jīng)網(wǎng)絡(luò)的結(jié)合1.3.1 模糊邏輯和神經(jīng)網(wǎng)絡(luò)結(jié)合的意義1.3.2 模糊邏輯和神經(jīng)網(wǎng)絡(luò)結(jié)合的前景第二章 模糊邏輯及其理論基礎(chǔ) 2.1 模糊集合與隸屬函數(shù)2.1.1 模糊集合概念2.1.2 隸屬函數(shù)2.1.3 分解定理與擴(kuò)張定理2.1.4 模糊數(shù)2.2 模糊關(guān)系、模糊矩陣與模糊變換2.2.1 模糊關(guān)系2.2.2 模糊矩陣2.2.3 模糊變換2.3模糊邏輯和函數(shù)2.3.1模糊命題2.3.2模糊邏輯2.3.3模糊邏輯函數(shù)2.4模糊語言2.4.1 語言及語言的模糊性2.4.2 模糊語言2.4.3 語法規(guī)則和算子2.4.4 模糊條件語句2.5 模糊推理2.5.1 模糊推理的CRI法2.5.2 模糊推理的TVR法2.5.3 模糊推理的直接法2.5.4 模糊推理的精確值法2.5.5 模糊推理的強(qiáng)度轉(zhuǎn)移法第三章 模糊控制基礎(chǔ) 3.1 模糊控制的系統(tǒng)結(jié)構(gòu)3.2 精確量的模糊化3.2.1 語言變量的分檔3.2.2 語言變量值的表示方法3.2.3 精確量轉(zhuǎn)換成模糊量3.3 模糊量的精確化3.3.1 最大隸屬度法3.3.2 中位數(shù)法3.3.3 重心法3.4 模糊控制規(guī)則及控制算法3.4.1 模糊控制規(guī)則的格式3.4.2 模糊控制規(guī)則的生成3.4.3 模糊控制規(guī)則的優(yōu)化3.4.4 模糊控制算法3.5 模糊控制的神經(jīng)網(wǎng)絡(luò)方法3.5.1 神經(jīng)元和神經(jīng)網(wǎng)絡(luò)3.5.2 神經(jīng)網(wǎng)絡(luò)的分布存儲和容錯(cuò)性3.5.3 神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)算法3.5.4 神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)的模糊控制3.5.5 神經(jīng)網(wǎng)絡(luò)構(gòu)造隸屬函數(shù)3.5.6 神經(jīng)網(wǎng)絡(luò)存儲控制規(guī)則3.5.7 神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)模糊化、反模糊化第四章 模糊控制器 4.1 模糊控制器結(jié)構(gòu)4.2 模糊控制器設(shè)計(jì)4.2.1 常規(guī)模糊控制器設(shè)計(jì)4.2.2 變結(jié)構(gòu)模糊控制器設(shè)計(jì)4.2.3 自組織模糊控制器設(shè)計(jì)4.2.4 自適應(yīng)模糊控制器設(shè)計(jì)4.3 模糊控制器的數(shù)學(xué)模型4.3.1 常規(guī)模糊控制器的數(shù)學(xué)模型4.3.2 模糊控制器數(shù)學(xué)模型的建立第五章 模糊控制系統(tǒng) 5.1 模糊系統(tǒng)的辨識和建模5.1.1 模糊系統(tǒng)辨識的數(shù)學(xué)基礎(chǔ)5.1.2 基于模糊關(guān)系方程的模糊模型辨識5.1.3 基于語言控制規(guī)則的模糊模型辨識5.2 模糊控制系統(tǒng)的設(shè)計(jì)5.2.1 模糊控制系統(tǒng)的一般設(shè)計(jì)過程5.2.2 模糊控制系統(tǒng)的典型設(shè)計(jì)5.3 模糊控制系統(tǒng)的穩(wěn)定性5.3.1 穩(wěn)定性分析的Lyapunov直接法5.3.2 語言規(guī)則描述的模糊控制系統(tǒng)的穩(wěn)定性5.3.3 關(guān)系方程描述的模糊控制系統(tǒng)的穩(wěn)定性第六章 數(shù)字單片機(jī)與模糊控制6.1 數(shù)字單片機(jī)MC68HC705P96.1.1 MC68HC705P9單片機(jī)性能概論6.1.2 MC68HC705P9單片機(jī)基本結(jié)構(gòu)6.1.3 MC68HC705P9指令系統(tǒng)6.2 數(shù)字單片機(jī)模糊控制方式6.2.1 數(shù)字單片機(jī)與模糊控制關(guān)系6.2.2 數(shù)字單片機(jī)模糊控制方式第七章 模糊單片機(jī)與模糊控制7.1 模糊單片機(jī)NLX2307.1.1 模糊單片機(jī)NLX230性能概況7.1.2 NLX230的結(jié)構(gòu)及引腳7.1.3 NLX230的模糊推理方式7.1.4 NLX230的內(nèi)部寄存器7.1.5 NLX230的操作及接口技術(shù)7.2 NLX230開發(fā)系統(tǒng)7.3 NLX230應(yīng)用例子第八章 模糊控制的開發(fā)軟件8.1 模糊推理機(jī)原理8.2 模糊推理機(jī)的算法8.3 模糊推理機(jī)結(jié)構(gòu)和清單8.4 模糊邏輯知識基發(fā)生器8.5 模糊推理開發(fā)環(huán)境8.5.1 FIDE的工作條件8.5.2 FIDE的結(jié)構(gòu)8.5.3 FIDE的工作過程第九章 模糊控制在家用電器中的應(yīng)用9.1 模糊控制的電冰箱9.1.1 電冰箱模糊控制系統(tǒng)結(jié)構(gòu)9.1.2 模糊控制規(guī)則和模糊量9.1.3 控制系統(tǒng)的電路結(jié)構(gòu)9.1.4 控制規(guī)則的自調(diào)整9.2 模糊控制的電飯鍋9.2.1 煮飯的工藝過程曲線9.2.2 模糊控制的邏輯結(jié)構(gòu)9.2.3 模糊量和模糊推理9.2.4 控制軟件框圖9.3 模糊控制的微波爐9.3.1 控制電路的結(jié)構(gòu)框圖9.3.2 微波爐的模糊量與推理9.3.3 微波爐控制電路結(jié)構(gòu)原理9.3.4 控制軟件原理及框圖9.4 模糊控制的洗衣機(jī)9.4.1 模糊洗衣機(jī)控制系統(tǒng)邏輯結(jié)構(gòu)9.4.2 模糊洗衣機(jī)的模糊推理9.4.3 洗衣機(jī)物理量檢測方法9.4.4 布質(zhì)和布量的模糊推理第十章 模糊控制在工程上的應(yīng)用10.1 模糊參數(shù)自適應(yīng)PID控制器10.1.1 自校正PID控制器10.1.2 模糊參數(shù)自適應(yīng)PID控制系統(tǒng)結(jié)構(gòu)10.1.3 模糊控制規(guī)則的產(chǎn)生10.1.4 模糊推理機(jī)理及運(yùn)行結(jié)果10.2 恒溫爐模糊控制10.2.1 恒溫爐模糊控制的系統(tǒng)結(jié)構(gòu)10.2.2 模糊控制器及控制規(guī)則的形成10.2.3 模糊控制器的校正10.3 感應(yīng)電機(jī)模糊矢量控制10.3.1 模糊矢量控制系統(tǒng)結(jié)構(gòu)10.3.2 矢量控制的基本原理10.3.3 模糊電阻觀測器10.3.4 模糊控制器及運(yùn)行
上傳時(shí)間: 2014-12-28
上傳用戶:semi1981
RS-485的傳輸線如何合理屏蔽為了減少電磁耦合,防止大的共模干擾損壞器件,傳輸線最好加屏蔽。屏蔽接法如下,其中電容為幾μF。
上傳時(shí)間: 2013-10-15
上傳用戶:momofiona
模塊化LED大屏幕顯示器的設(shè)計(jì):LED大屏幕顯示器由于其醒目! 內(nèi)容靈活多變等特點(diǎn)" 已經(jīng)越來越多地應(yīng)用于廣告! 信息發(fā)布! 交通指示等公共場所" 取得了良好效果LED顯示屏主要分為數(shù)碼顯示和點(diǎn)陣顯示兩大類" 本文只討論點(diǎn)陣顯示$ 目前的627 顯示屏基本上都是先由用戶提出要求" 生產(chǎn)廠家根據(jù)需要訂做$ 每次都要重復(fù)設(shè)計(jì)電路和機(jī)械結(jié)構(gòu)" 造成資源浪費(fèi)" 而且若用戶的需求改變" 改動(dòng)將十分困難$實(shí)際上不論顯示屏的大小" 其原理都是相同的"因此完全可以設(shè)計(jì)出一種標(biāo)準(zhǔn)化% 模塊化的LED 顯示屏" 針對不同的需要" 只需要簡單組合相應(yīng)的模塊即可$ 本文介紹的就是一種模塊化的LED 顯示屏" 可以根據(jù)需要靈活改變大小" 并可以脫離計(jì)算機(jī)獨(dú)立運(yùn)行" 還可以實(shí)現(xiàn)如閃爍! 滾動(dòng)顯示等特效$ 對整體式顯示屏刷新率不足發(fā)生閃爍的常見問題" 在這個(gè)設(shè)計(jì)中由于被分割成小模塊" 不再成為問題$
上傳時(shí)間: 2013-10-09
上傳用戶:fxf126@126.com
pic單片機(jī)實(shí)用教程(提高篇)以介紹PIC16F87X型號單片機(jī)為主,并適當(dāng)兼顧PIC全系列,共分9章,內(nèi)容包括:存儲器;I/O端口的復(fù)位功能;定時(shí)器/計(jì)數(shù)器TMR1;定時(shí)器TMR2;輸入捕捉/輸出比較/脈寬調(diào)制CCP;模/數(shù)轉(zhuǎn)換器ADC;通用同步/異步收發(fā)器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特點(diǎn):通俗易懂、可讀性強(qiáng)、系統(tǒng)全面、學(xué)練結(jié)合、學(xué)用并重、實(shí)例豐富、習(xí)題齊全。<br>本書作為Microchip公司大學(xué)計(jì)劃選擇用書,可廣泛適用于初步具備電子技術(shù)基礎(chǔ)和計(jì)算機(jī)知識基礎(chǔ)的學(xué)生、教師、單片機(jī)愛好者、電子制作愛好者、電器維修人員、電子產(chǎn)品開發(fā)設(shè)計(jì)者、工程技術(shù)人員閱讀。本教程全書共分2篇,即基礎(chǔ)篇和提高篇,分2冊出版,以適應(yīng)不同課時(shí)和不同專業(yè)的需要,也為教師和讀者增加了一種可選方案。 第1章 EEPROM數(shù)據(jù)存儲器和FIASH程序存儲器1.1 背景知識1.1.1 通用型半導(dǎo)體存儲器的種類和特點(diǎn)1.1.2 PIC單片機(jī)內(nèi)部的程序存儲器1.1.3 PIC單片機(jī)內(nèi)部的EEPROM數(shù)據(jù)存儲器1.1.4 PIC16F87X內(nèi)部EEPROM和FIASH操作方法1.2 與EEPROM相關(guān)的寄存器1.3 片內(nèi)EEPROM數(shù)據(jù)存儲器結(jié)構(gòu)和操作原理1.3.1 從EEPROM中讀取數(shù)據(jù)1.3.2 向EEPROM中燒寫數(shù)據(jù)1.4 與FLASH相關(guān)的寄存器1.5 片內(nèi)FLASH程序存儲器結(jié)構(gòu)和操作原理1.5.1 讀取FLASH程序存儲器1.5.2 燒寫FLASH程序存儲器1.6 寫操作的安全保障措施1.6.1 寫入校驗(yàn)方法1.6.2 預(yù)防意外寫操作的保障措施1.7 EEPROM和FLASH應(yīng)用舉例1.7.1 EEPROM的應(yīng)用1.7.2 FIASH的應(yīng)用思考題與練習(xí)題第2章 輸入/輸出端口的復(fù)合功能2.1 RA端口2.1.1 與RA端口相關(guān)的寄存器2.1.2 電路結(jié)構(gòu)和工作原理2.1.3 編程方法2.2 RB端口2.2.1 與RB端口相關(guān)的寄存器2.2.2 電路結(jié)構(gòu)和工作原理2.2.3 編程方法2.3 RC端口2.3.1 與RC端口相關(guān)的寄存器2.3.2 電路結(jié)構(gòu)和工作原理2.3.3 編程方法2.4 RD端口2.4.1 與RD端口相關(guān)的寄存器2.4.2 電路結(jié)構(gòu)和工作原理2.4.3 編程方法2.5 RE端口2.5.1 與RE端口相關(guān)的寄存器2.5.2 電路結(jié)構(gòu)和工作原理2.5.3 編程方法2.6 PSP并行從動(dòng)端口2.6.1 與PSP端口相關(guān)的寄存器2.6.2 電路結(jié)構(gòu)和工作原理2.7 應(yīng)用舉例思考題與練習(xí)題第3章 定時(shí)器/計(jì)數(shù)器TMR13.1 定時(shí)器/計(jì)數(shù)器TMR1模塊的特性3.2 定時(shí)器/計(jì)數(shù)器TMR1模塊相關(guān)的寄存器3.3 定時(shí)器/計(jì)數(shù)器TMR1模塊的電路結(jié)構(gòu)3.4 定時(shí)器/計(jì)數(shù)器TMR1模塊的工作原理3.4.1 禁止TMR1工作3.4.2 定時(shí)器工作方式3.4.3 計(jì)數(shù)器工作方式3.4.4 TMR1寄存器的賦值與復(fù)位3.5 定時(shí)器/計(jì)數(shù)器TMR1模塊的應(yīng)用舉例思考題與練習(xí)題第4章 定時(shí)器TMR24.1 定時(shí)器TMR2模塊的特性4.2 定時(shí)器TMR2模塊相關(guān)的寄存器4.3 定時(shí)器TMR2模塊的電路結(jié)構(gòu)4.4 定時(shí)器TMR2模塊的工作原理4.4.1 禁止TMR2工作4.4.2 定時(shí)器工作方式4.4.3 寄存器TMR2和PR2以及分頻器的復(fù)位4.4.4 TMR2模塊的初始化編程4.5 定時(shí)器TMR2模塊的應(yīng)用舉例思考題與練習(xí)題第5章 輸入捕捉/輸出比較/脈寬調(diào)制CCP5.1 輸入捕捉工作模式5.1.1 輸入捕捉摸式相關(guān)的寄存器5.1.2 輸入捕捉模式的電路結(jié)構(gòu)5.1.3 輸入捕捉摸式的工作原理5.1.4 輸入捕捉摸式的應(yīng)用舉例5.2 輸出比較工作模式5.2.1 輸出比較模式相關(guān)的寄存器5.2.2 輸出比較模式的電路結(jié)構(gòu)5.2.3 輸出比較模式的工作原理5.2.4 輸出比較模式的應(yīng)用舉例5.3 脈寬調(diào)制輸出工作模式5.3.1 脈寬調(diào)制模式相關(guān)的寄存器5.3.2 脈寬調(diào)制模式的電路結(jié)構(gòu)5.3.3 脈寬調(diào)制模式的工作原理5.3.4 脈定調(diào)制模式的應(yīng)用舉例5.4 兩個(gè)CCP模塊之間相互關(guān)系思考題與練習(xí)題第6章 模/數(shù)轉(zhuǎn)換器ADC6.1 背景知識6.1.1 ADC種類與特點(diǎn)6.1.2 ADC器件的工作原理6.2 PIC16F87X片內(nèi)ADC模塊6.2.1 ADC模塊相關(guān)的寄存器6.2.2 ADC模塊結(jié)構(gòu)和操作原理6.2.3 ADC模塊操作時(shí)間要求6.2.4 特殊情況下的A/D轉(zhuǎn)換6.2.5 ADC模塊的轉(zhuǎn)換精度和分辨率6.2.6 ADC模塊的內(nèi)部動(dòng)作流程和傳遞函數(shù)6.2.7 ADC模塊的操作編程6.3 PIC16F87X片內(nèi)ADC模塊的應(yīng)用舉例思考題與練習(xí)題第7章 通用同步/異步收發(fā)器USART7.1 串行通信的基本概念7.1.1 串行通信的兩種基本方式7.1.2 串行通信中數(shù)據(jù)傳送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的碼型、編碼方式和幀結(jié)構(gòu)7.1.5 串行通信中的檢錯(cuò)和糾錯(cuò)方式7.1.6 串行通信組網(wǎng)方式7.1.7 串行通信接口電路和參數(shù)7.1.8 串行通信的傳輸速率7.2 PIC16F87X片內(nèi)通用同步/異步收發(fā)器USART模塊7.2.1 與USART模塊相關(guān)的寄存器7.2.2 USART波特率發(fā)生器BRG7.2.3 USART模塊的異步工作方式7.2.4 USART模塊的同步主控工作方式7.2.5 USART模塊的同步從動(dòng)工作方式7.3 通用同步/異步收發(fā)器USART的應(yīng)用舉例思考題與練習(xí)題第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知識8.1.1 SPI接口信號描述8.1.2 基于SPI的系統(tǒng)構(gòu)成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相關(guān)的寄存器8.2.2 SPI接口的結(jié)構(gòu)和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的從動(dòng)方式8.3 SPI接口的應(yīng)用舉例思考題與練習(xí)題第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C總線的背景知識9.1.1 名詞術(shù)語9.1.2 I(平方)C總線的技術(shù)特點(diǎn)9.1.3 I(平方)C總線的基本工作原理9.1.4 I(平方)C總線信號時(shí)序分析9.1.5 信號傳送格式9.1.6 尋址約定9.1.7 技術(shù)參數(shù)9.1.8 I(平方)C器件與I(平方)C總線的接線方式9.1.9 相兼容的SMBus總線9.2 與I(平方)C總線相關(guān)的寄存器9.3 典型信號時(shí)序的產(chǎn)生方法9.3.1 波特率發(fā)生器9.3.2 啟動(dòng)信號9.3.3 重啟動(dòng)信號9.3.4 應(yīng)答信號9.3.5 停止信號9.4 被控器通信方式9.4.1 硬件結(jié)構(gòu)9.4.2 被主控器尋址9.4.3 被控器接收——被控接收器9.4.4 被控器發(fā)送——被控發(fā)送器9.4.5 廣播式尋址9.5 主控器通信方式9.5.1 硬件結(jié)構(gòu)9.5.2 主控器發(fā)送——主控發(fā)送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的總線沖突和總線仲裁9.6.1 發(fā)送和應(yīng)答過程中的總線沖突9.6.2 啟動(dòng)過程中的總線沖突9.6.3 重啟動(dòng)過程中的總線沖突9.6.4 停止過程中的總線沖突9.7 I(平方)C總線的應(yīng)用舉例思考題與練習(xí)題附錄A 包含文件P16F877.INC附錄B 新版宏匯編器MPASM偽指令總表參考文獻(xiàn)
標(biāo)簽: pic 單片機(jī) 實(shí)用教程
上傳時(shí)間: 2013-12-14
上傳用戶:xiaoyuer
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1