基于DSP的FIR線性相位濾波器的設(shè)計(jì)
上傳時(shí)間: 2013-10-11
上傳用戶:zfyiaaa
針對(duì)信號(hào)檢測(cè)中經(jīng)常存在的噪聲污染問(wèn)題,利用小波分解之后可以在各個(gè)層次選擇閾值,對(duì)噪聲成分進(jìn)行抑制,手段更加靈活。本文介紹了小波變換的一般理論以及在信號(hào)降噪中的應(yīng)用,分析了被噪聲污染后的信號(hào)的特性;利用MATLAB軟件進(jìn)行了信號(hào)降噪的模擬仿真實(shí)驗(yàn)并在降噪光滑性和相似性兩個(gè)方面體現(xiàn)出小波變換的優(yōu)勢(shì)。本文分別使用了不同類型的小波和相同類型小波下不同閾值對(duì)信號(hào)進(jìn)行了降噪.仿真結(jié)果表明小波變換具有良好降噪的效果。
標(biāo)簽: 小波分析 信號(hào)降噪 中的應(yīng)用
上傳時(shí)間: 2013-10-19
上傳用戶:alex wang
在QPSK調(diào)制方式下,分別研究推導(dǎo)了基于輔助數(shù)據(jù)的極大似然比信噪比估計(jì)算法研究、基于矩的信噪比估計(jì)算法研究以及基于高階累積量的信噪比估計(jì)算法。通過(guò)仿真比較了信噪比估計(jì)算法的性能,著重分析比較了采用的迭代次數(shù)及數(shù)據(jù)長(zhǎng)度等參數(shù)對(duì)算法性能的影響,最終根據(jù)算法各自的特點(diǎn)給出了相應(yīng)的適用范圍。
上傳時(shí)間: 2013-10-20
上傳用戶:15736969615
用于定量表示ADC動(dòng)態(tài)性能的常用指標(biāo)有六個(gè),分別是:SINAD(信納比)、ENOB(有效位 數(shù))、SNR(信噪比)、THD(總諧波失真)、THD + N(總諧波失真加噪聲)和SFDR(無(wú)雜散動(dòng)態(tài) 范圍)
上傳時(shí)間: 2014-01-22
上傳用戶:魚哥哥你好
對(duì)脈搏波的完全分析是建立在含有少量噪聲且較為清晰的脈搏波信號(hào)中,然而在采集脈搏波信號(hào)時(shí)容易受到多種干擾的影響,使其提取出來(lái)的脈搏波含有大量的噪聲,因此降噪處理顯得尤為必要。同時(shí),脈搏波中含有人體生理病理信息,不同的人將表現(xiàn)為不同的特征,可以看出確定脈搏波特征點(diǎn)對(duì)于分析人體生理健康很有意義。針對(duì)信號(hào)去噪問(wèn)題采用小波變換和多分辨率分析的方法,該方法在時(shí)域和頻域都能表征信號(hào)局部信息的能力,且具有對(duì)信號(hào)具有自適應(yīng)性。運(yùn)用極值法確定出脈搏波的峰值點(diǎn),然后再根據(jù)峰值點(diǎn)確定出其他特征點(diǎn)的位置,實(shí)驗(yàn)證明該方法能夠增加特征點(diǎn)的檢出率。
標(biāo)簽: 脈搏波 信號(hào)降噪 特征點(diǎn)識(shí)別
上傳時(shí)間: 2013-10-12
上傳用戶:shirleyYim
文中討論了圖像的高斯加性噪聲模型和圖像的稀疏性表示,提出了利用映射函數(shù)來(lái)描述圖像的去噪過(guò)程,通過(guò)求解映射函數(shù)和利用映射函數(shù)對(duì)加噪圖像的小波變換子帶系數(shù)進(jìn)行變換,達(dá)到了降低圖像噪聲并使加噪圖像逼近原始圖像的目的。經(jīng)過(guò)實(shí)驗(yàn)比較,驗(yàn)證了本文算法的可行性和魯棒性。
上傳時(shí)間: 2013-10-21
上傳用戶:許小華
提出了一種基于仿生小波變換和模糊推理的變步長(zhǎng)自適應(yīng)濾波語(yǔ)音降噪算法。該算法首先用仿生小波變換法對(duì)包含噪聲的語(yǔ)音信號(hào)進(jìn)行小波分解,以分離出來(lái)的噪聲信號(hào)作為自適應(yīng)濾波器的輸入,選擇基于模糊推理變步長(zhǎng)自適應(yīng)算法對(duì)帶噪聲語(yǔ)音信號(hào)進(jìn)行降噪處理,最終實(shí)現(xiàn)語(yǔ)音信號(hào)的信噪分離,去除語(yǔ)音信號(hào)中的噪聲。仿真結(jié)果表明,該方法對(duì)語(yǔ)音信號(hào)有較為明顯的降噪效果。
標(biāo)簽: 仿生 小波變換 模糊推理 語(yǔ)音降噪
上傳時(shí)間: 2013-10-14
上傳用戶:戀天使569
針對(duì)齒輪故障特征信號(hào)具有強(qiáng)噪聲背景、非線性、非平穩(wěn)性特點(diǎn),提出采用形態(tài)梯度小波對(duì)齒輪振動(dòng)信號(hào)進(jìn)行降噪。首先使用形態(tài)梯度小波把齒輪振動(dòng)信號(hào)分解到多個(gè)尺度上,然后對(duì)各層的細(xì)節(jié)系數(shù)進(jìn)行軟閾值方法降噪處理,對(duì)經(jīng)過(guò)處理后的小波系數(shù)進(jìn)行重構(gòu)。對(duì)降噪后的齒輪振動(dòng)信號(hào)采用S變換多分辨率時(shí)頻分析,能夠從具有良好的時(shí)頻分辨率的S變換譜圖提取齒輪故障特征。通過(guò)仿真試驗(yàn)和故障軸承的信號(hào)分析證明,該方法具有短時(shí)傅里葉變換和小波變換的優(yōu)點(diǎn),不存在Wigner-Ville分布的交叉干擾和負(fù)頻率,能有效地提取隱含在噪聲中的齒輪故障特征,適合齒輪故障的在線監(jiān)測(cè)和診斷。
上傳時(shí)間: 2013-11-01
上傳用戶:AISINI005
提出了一種用各向異性雙變量拉普拉斯函數(shù)模型去模擬NSCT域的系數(shù)的圖像去噪算法,這種各向異性雙邊拉普拉斯模型不僅考慮了NSCT系數(shù)相鄰尺度間的父子關(guān)系,同時(shí)滿足自然圖像不同尺度間NSCT系數(shù)方差具有各向異性的特征,基于這種統(tǒng)計(jì)模型,文中先推導(dǎo)出了一種各向異性雙變量收縮函數(shù)的近似形式,然后基于貝葉斯去噪法和局部方差估計(jì)將這種新的閾值收縮函數(shù)應(yīng)用于NSCT域,實(shí)驗(yàn)結(jié)果表明文中提出的方法同小波域 BiShrink算法、小波域ProbShrink算法、小波域NeighShrink算法相比,能夠有效地去除圖像的高斯噪聲,提高了圖像的峰值信噪比;并較完整地保持了圖像的紋理和邊緣等細(xì)節(jié)信息,從而明顯改善了圖像的視覺效果。
上傳時(shí)間: 2013-10-23
上傳用戶:thuyenvinh
基于傅里葉計(jì)算全息技術(shù),結(jié)合菲涅爾雙隨機(jī)相位加密系統(tǒng),提出了一種數(shù)字圖像加密方法。該方法以傅里葉計(jì)算全息圖記錄菲涅爾衍射雙隨機(jī)相位加密圖像,傅里葉計(jì)算全息加密圖像隱藏了原圖像大小尺度信息,而且再現(xiàn)多個(gè)圖像,必須針對(duì)加密圖像共軛方可解密,提高了圖像加密的安全性,并且解決了普通方法加密圖像難存儲(chǔ)的問(wèn)題,作為原始明文的擁有者,兩個(gè)隨機(jī)相位板,應(yīng)用波長(zhǎng),兩次菲涅爾衍射的距離都可作為解密密鑰。
上傳時(shí)間: 2013-10-23
上傳用戶:YYRR
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1