K-MEANS算法 輸入:聚類個數k,以及包含 n個數據對象的數據庫。 輸出:滿足方差最小標準的k個聚類。 處理流程: (1) 從 n個數據對象任意選擇 k 個對象作為初始聚類中心; (2) 循環(3)到(4)直到每個聚類不再發生變化為止 (3) 根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;并根據最小距離重新對相應對象進行劃分; (4) 重新計算每個(有變化)聚類的均值(中心對象)
上傳時間: 2013-12-20
上傳用戶:chenjjer
Visual 開發 希望對你們有幫助 public static int Rom(int n, int m)//雙寄或雙偶 { int count = 0 //第一排Y坐標上要幾個 if (n < m) { for (int i = 1 i <= n i = i + 2) { count++ } } else { for (int j = 1 j <= m j = j + 2) { count++ } } return count }
上傳時間: 2013-12-13
上傳用戶:懶龍1988
learningMatlab PhÇ n 1 c¬ së Mat lab Ch ¬ ng 1: Cµ i ® Æ t matlab 1.1.Cµ i ® Æ t ch ¬ ng tr×nh: Qui tr×nh cµ i ® Æ t Matlab còng t ¬ ng tù nh viÖ c cµ i ® Æ t c¸ c ch ¬ ng tr×nh phÇ n mÒ m kh¸ c, chØ cÇ n theo c¸ c h íng dÉ n vµ bæ xung thª m c¸ c th« ng sè cho phï hî p. 1.1.1 Khë i ® éng windows. 1.1.2 Do ch ¬ ng tr×nh ® î c cÊ u h×nh theo Autorun nª n khi g¾ n dÜ a CD vµ o æ ® Ü a th× ch ¬ ng tr×nh tù ho¹ t ® éng, cö a sæ
標簽: learningMatlab 172 199 173
上傳時間: 2013-12-20
上傳用戶:lanwei
k個位子,n個元素填充,每個位置上數字可重復。例程為一簡潔的遞歸算法,顯示所有可能的組合
標簽:
上傳時間: 2017-09-01
上傳用戶:181992417
批處理感知器算法的代碼matlab w1=[1,0.1,1.1;1,6.8,7.1;1,-3.5,-4.1;1,2.0,2.7;1,4.1,2.8;1,3.1,5.0;1,-0.8,-1.3; 1,0.9,1.2;1,5.0,6.4;1,3.9,4.0]; w2=[1,7.1,4.2;1,-1.4,-4.3;1,4.5,0.0;1,6.3,1.6;1,4.2,1.9;1,1.4,-3.2;1,2.4,-4.0; 1,2.5,-6.1;1,8.4,3.7;1,4.1,-2.2]; w3=[1,-3.0,-2.9;1,0.5,8.7;1,2.9,2.1;1,-0.1,5.2;1,-4.0,2.2;1,-1.3,3.7;1,-3.4,6.2; 1,-4.1,3.4;1,-5.1,1.6;1,1.9,5.1]; figure; plot(w3(:,2),w3(:,3),'ro'); hold on; plot(w2(:,2),w2(:,3),'b+'); W=[w2;-w3];%增廣樣本規范化 a=[0,0,0]; k=0;%記錄步數 n=1; y=zeros(size(W,2),1);%記錄錯分的樣本 while any(y<=0) k=k+1; y=a*transpose(W);%記錄錯分的樣本 a=a+sum(W(find(y<=0),:));%更新a if k >= 250 break end end if k<250 disp(['a為:',num2str(a)]) disp(['k為:',num2str(k)]) else disp(['在250步以內沒有收斂,終止']) end %判決面:x2=-a2*x1/a3-a1/a3 xmin=min(min(w1(:,2)),min(w2(:,2))); xmax=max(max(w1(:,2)),max(w2(:,2))); x=xmin-1:xmax+1;%(xmax-xmin): y=-a(2)*x/a(3)-a(1)/a(3); plot(x,y)
上傳時間: 2016-11-07
上傳用戶:a1241314660
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
#include <stdio.h> #include <stdlib.h> #define SMAX 100 typedef struct SPNode { int i,j,v; }SPNode; struct sparmatrix { int rows,cols,terms; SPNode data [SMAX]; }; sparmatrix CreateSparmatrix() { sparmatrix A; printf("\n\t\t請輸入稀疏矩陣的行數,列數和非零元素個數(用逗號隔開):"); scanf("%d,%d,%d",&A.cols,&A.terms); for(int n=0;n<=A.terms-1;n++) { printf("\n\t\t輸入非零元素值(格式:行號,列號,值):"); scanf("%d,%d,%d",&A.data[n].i,&A.data[n].j,&A.data[n].v); } return A; } void ShowSparmatrix(sparmatrix A) { int k; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { k=0; for(int n=0;n<=A.terms-1;n++) { if((A.data[n].i-1==x)&&(A.data[n].j-1==y)) { printf("%8d",A.data[n].v); k=1; } } if(k==0) printf("%8d",k); } printf("\n\t\t"); } } void sumsparmatrix(sparmatrix A) { SPNode *p; p=(SPNode*)malloc(sizeof(SPNode)); p->v=0; int k; k=0; printf("\n\t\t"); for(int x=0;x<=A.rows-1;x++) { for(int y=0;y<=A.cols-1;y++) { for(int n=0;n<=A.terms;n++) { if((A.data[n].i==x)&&(A.data[n].j==y)&&(x==y)) { p->v=p->v+A.data[n].v; k=1; } } } printf("\n\t\t"); } if(k==1) printf("\n\t\t對角線元素的和::%d\n",p->v); else printf("\n\t\t對角線元素的和為::0"); } int main() { int ch=1,choice; struct sparmatrix A; A.terms=0; while(ch) { printf("\n"); printf("\n\t\t 稀疏矩陣的三元組系統 "); printf("\n\t\t*********************************"); printf("\n\t\t 1------------創建 "); printf("\n\t\t 2------------顯示 "); printf("\n\t\t 3------------求對角線元素和"); printf("\n\t\t 4------------返回 "); printf("\n\t\t*********************************"); printf("\n\t\t請選擇菜單號(0-3):"); scanf("%d",&choice); switch(choice) { case 1: A=CreateSparmatrix(); break; case 2: ShowSparmatrix(A); break; case 3: SumSparmatrix(A); break; default: system("cls"); printf("\n\t\t輸入錯誤!請重新輸入!\n"); break; } if (choice==1||choice==2||choice==3) { printf("\n\t\t"); system("pause"); system("cls"); } else system("cls"); } }
上傳時間: 2020-06-11
上傳用戶:ccccy
經典c程序100例==1--10 【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) }
上傳時間: 2014-01-07
上傳用戶:lizhizheng88
此為編譯原理實驗報告 學習消除文法左遞規算法,了解消除文法左遞規在語法分析中的作用 內含 設計算法 目的 源碼 等等.... 算法:消除左遞歸算法為: (1)把文法G的所有非終結符按任一種順序排列成P1,P2,…Pn 按此順序執行 (2)FOR i:=1 TO n DO BEGIN FOR j:=1 DO 把形如Pi→Pjγ的規則改寫成 Pi→δ1γ δ2γ … δkγ。其中Pj→δ1 δ2 … δk是關于Pj的所有規則; 消除關于Pi規則的直接左遞歸性 END (3)化簡由(2)所得的文法。即去除那些從開始符號出發永遠無法到達的非終結符的 產生規則。
上傳時間: 2015-03-29
上傳用戶:極客
算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。
上傳時間: 2015-04-09
上傳用戶:wang5829