Routine mampres: To obtain amplitude response from h(exp(jw)). input parameters: h :n dimensioned complex array. the frequency response is stored in h(0) to h(n-1). n :the dimension of h and amp. fs :sampling frequency (Hz). iamp:If iamp=0: The Amplitude Res. amp(k)=abs(h(k)) If iamp=1: The Amplitude Res. amp(k)=20.*alog10(abs(h(k))). output parameters: amp :n dimensioned real array. the amplitude-frequency response is stored in amp(0) to amp(n-1). Note: this program will generate a data file "filename.dat" . in chapter 2
標簽: dimensione parameters amplitude response
上傳時間: 2013-12-19
上傳用戶:xfbs821
給定n 個整數(shù)a ,a , ,an 1 2 組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區(qū)間i i j a , a , , a +1 為一個零和區(qū)間,相應的區(qū)間長度為j-i+1。
上傳時間: 2015-07-23
上傳用戶:zhangzhenyu
給定n 個整數(shù)a ,a , ,an 1 2 組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區(qū)間i i j a , a , , a +1 為一個零和區(qū)間,相應的區(qū)間長度為j-i+1。
上傳時間: 2013-12-21
上傳用戶:偷心的海盜
* 用改進的歐拉方法求解初值問題,其中一階微分方程未y =f(x,y) * 初始條件為x=x[0]時,y=y(tǒng)[0]. * 輸入: f--函數(shù)f(x,y)的指針 * x--自變量離散值數(shù)組(其中x[0]為初始條件) * y--對應于自變量離散值的函數(shù)值數(shù)組(其中y[0]為初始條件) * h--計算步長 * n--步數(shù) * 輸出: x為說求解的自變量離散值數(shù)組 * y為所求解對應于自變量離散值的函數(shù)值數(shù)組
標簽: 初值
上傳時間: 2015-07-26
上傳用戶:libinxny
TV-tree的c實現(xiàn)源碼,對應原文章K.-I. Lin, H. V. Jagadish, C. Faloutsos: The TV-Tree: An Index Structure for High-Dimensional Data.
上傳時間: 2014-11-26
上傳用戶:lxm
經(jīng)典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數(shù)字,能組成多少個互不相同且無重復數(shù)字的三位數(shù)?都是多少? 1.程序分析:可填在百位、十位、個位的數(shù)字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) ?。?以下為三重循環(huán)*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) } }
上傳時間: 2013-12-14
上傳用戶:hfmm633
給定n個整數(shù)a , a , ,an 1 2 組成的序列。序列中元素i a 的符號定義為: ï î ï í ì - < = > = 1 0 0 0 1 0 sgn( ) i i i i a a a a 符號平衡問題要求給定序列的最長符號平衡段的長度L,即: þ ý ü î í ì = + - = å = £ £ £ max 1| sgn( ) 0 1 j k i i j n k L j i a 。 例如,當n=10,相應序列為:1,1,-1,-2,0,1,3,-1,2,-1 時,L=9。
上傳時間: 2015-10-28
上傳用戶:xaijhqx
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環(huán)結構緊湊,對于稠密圖,效率要高于執(zhí)行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
很好的搜索: 給你很多長度不定的木棒,將他們分成幾組,每組中的總長度作為這組的標示值,請給出一種分組方法,能使得所有標示值中的最小值最大。 Input 多組,每組兩行,第一行是一個N和K,代表有N根木棒,分成K組,第二行是N個數(shù)字,代表木棒的長度。(N不超過100,K不超過20,每根木棒長度不超過1000) Output 輸出所有標示值中的最小值的最大值。 Sample Input 5 3 1 3 5 7 9 5 3 89 59 68 35 29 Sample Output 8 89
上傳時間: 2013-12-23
上傳用戶:nairui21
題目:加密軟件 要求:(1)輸入任意一段明文M,以及密鑰K (2)根據(jù)一下公式將其轉換為密文C。 Ci = mi + K ,其中i = 0,1,……n-1 , K 為密鑰; (3)具有輸入輸出界面。
上傳時間: 2013-11-25
上傳用戶:shawvi