DesignSpark PCB 第3版現已推出! 包括3種全新功能: 1. 模擬介面 Simulation Interface 2. 設計計算機 Design Calculator 3. 零件群組 Component Grouping 第3版新功能介紹 (含資料下載) 另外, 中文版的教學已經準備好了, 備有簡體和繁體版, 趕快下載來看看! 設計PCB產品激活:激活入品 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum。
標簽: DesignSpark PCB 設計工具 免費下載
上傳時間: 2013-10-19
上傳用戶:小眼睛LSL
DesignSpark PCB 第3版現已推出! 包括3種全新功能: 1. 模擬介面 Simulation Interface 2. 設計計算機 Design Calculator 3. 零件群組 Component Grouping 第3版新功能介紹 (含資料下載) 另外, 中文版的教學已經準備好了, 備有簡體和繁體版, 趕快下載來看看! 設計PCB產品激活:激活入品 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum。
標簽: DesignSpark PCB 設計工具 免費下載
上傳時間: 2013-10-07
上傳用戶:a67818601
系統資源(r1…rm),共有m類,每類數目為r1…rm。隨機產生進程Pi(id,s(j,k),t),0
上傳時間: 2014-01-27
上傳用戶:天誠24
經典c程序100例==1--10 【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) }
上傳時間: 2014-01-07
上傳用戶:lizhizheng88
算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。
上傳時間: 2015-04-09
上傳用戶:wang5829
經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) } }
上傳時間: 2013-12-14
上傳用戶:hfmm633
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
動態規劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會懷疑這道題的后效性而放棄動規做法。 本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001 div 2]...) 無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗…… 反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)
上傳時間: 2014-07-16
上傳用戶:libinxny
Instead of finding the longest common subsequence, let us try to determine the length of the LCS. Then tracking back to find the LCS. Consider a1a2…am and b1b2…bn. Case 1: am=bn. The LCS must contain am, we have to find the LCS of a1a2…am-1 and b1b2…bn-1. Case 2: am≠bn. Wehave to find the LCS of a1a2…am-1 and b1b2…bn, and a1a2…am and b b b b1b2…bn-1 Let A = a1 a2 … am and B = b1 b2 … bn Let Li j denote the length of the longest i,g g common subsequence of a1 a2 … ai and b1 b2 … bj. Li,j = Li-1,j-1 + 1 if ai=bj max{ L L } a≠b i-1,j, i,j-1 if ai≠j L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.
標簽: the subsequence determine Instead
上傳時間: 2013-12-17
上傳用戶:evil
//初始化 initscr() //獲得屏幕尺寸 getmaxyx(stdscr, h, w) //畫背景 for(i=0 i<h i++) for(j=0 j<w j++){ mvaddch(i, j, ACS_CKBOARD) } refresh() //建立窗口 pad = newpad(80, 128) for(i=0 i<80 i++){ char line[128] sprintf(line, "This line in pad is numbered d\n", i) mvwprintw(pad, i, 0, line) } //刷新屏幕 refresh() prefresh(pad, 0, 1, 5, 10, 20, 45) for(i=0 i<50 i++){ prefresh(pad, i+1, 1, 5, 10, 20, 45) usleep(30000) } //等待按鍵 getch()
標簽: getmaxyx initscr stdscr for
上傳時間: 2014-08-30
上傳用戶:龍飛艇