亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

變器研究

  • 混合動力汽車42V電源系統(tǒng)研究.rar

    汽車從批量生產到現(xiàn)在已經(jīng)有100多年的歷史,其中,車輛電子化、電動化取得了驚人的進展,伴隨而來的是汽車用電量的迅速增加。專家預計到2010年電氣方面功率會達到10kW,電流將會增加3倍以上,如不增加電流,最有效的方法是盡量提高汽車電源供電電壓。電壓最好能在人體安全電壓范圍(DC60V)以下,42V是一種解決辦法。采用42V電源,可以直接減小導線尺寸和實現(xiàn)輕量化,從而降低成本。 在新的42V電源系統(tǒng)中,采用42V/14V雙電壓方案,對目前的電氣系統(tǒng)沖擊較小,過渡平緩。本文在綜合國內外相關研究的基礎上,對42V/14V雙電壓電氣系統(tǒng)的技術發(fā)展以及現(xiàn)狀進行了較系統(tǒng)的研究。主要研究內容如下: 首先,本文分析了汽車電源升壓的原因,介紹了國內外的現(xiàn)狀。研究探討新型42V電源系統(tǒng)對汽車蓄電池的影響,介紹了混合動力車用蓄電池的特點,比較目前混合動力車用幾種蓄電池的方案。因為42V/14V雙電壓共存,存在多種直流電壓變換器,本文分析了DC/DC變換器的結構和原理,設計了高頻斬波型和二重軟開關兩種DC/DC變換器模塊方案。 其次,介紹了混合動力汽車42V一體化啟動發(fā)電機系統(tǒng)裝置的特點,敘述其工作原理和系統(tǒng)組成。提出了一種基于永磁同步電機ISG系統(tǒng)的設計方案。在對永磁同步電機理論研究的基礎上,本文完成了對永磁同步電機起動的實驗和調試。通過對實驗樣機做起動實驗,驗證了本文設計的ISG系統(tǒng)及電機的硬件驅動的可行性。 最后,汽車電源系統(tǒng)升壓會產生更高的瞬態(tài)高壓和更強的電磁干擾,本文簡要分析了其產生的原因,闡述了基本的抑制方法。 目前汽車電源系統(tǒng)由14V電源向42V電源發(fā)展已經(jīng)是必然的趨勢。作為過渡階段,對42V/14V雙電壓系統(tǒng)的研究將會是汽車界最近時期的一個重要內容。42V汽車電源系統(tǒng)標準的實施,將對汽車電器和電子設備帶來巨大的沖擊,同時也會給整個汽車界帶來新一輪的電氣技術革命。

    標簽: 42V 混合動力汽車 電源

    上傳時間: 2013-07-23

    上傳用戶:wkchong

  • 基于CANopen的地鐵列車牽引轉矩控制研究.rar

    地鐵列車牽引轉矩控制是影響列車安全可靠運行的重要因素,牽引變流模塊是整個列車交流傳動系統(tǒng)的核心設備,而牽引轉矩控制又是最關鍵的部分。本文以某城市國產化地鐵列車為研究對象,主要針對牽引轉矩控制方案進行研究并通過設計列車通信網(wǎng)絡對牽引轉矩實施監(jiān)測。 論文首先介紹地鐵列車牽引轉矩控制的研究現(xiàn)狀,分析目前高性能交流調速方法在地鐵列車牽引轉矩控制中的應用現(xiàn)狀。并簡要介紹了網(wǎng)絡監(jiān)測技術的研究現(xiàn)狀和CANopen總線協(xié)議在軌道交通車輛中的國內外應用現(xiàn)狀。 采用可編程邏輯控制器PLC及其子模塊構建了通信網(wǎng)絡的硬件結構,并設計了通信網(wǎng)絡軟件。對CANopen的通信報文進行了具體設計,實現(xiàn)了應用層協(xié)議CANopen的功能。 根據(jù)實際運行的需求,對牽引電機轉矩控制、牽引逆變器的PWM控制方式進行了研究。采用帶轉矩內環(huán)的轉速、磁鏈閉環(huán)矢量控制方法,應用帶定時調制環(huán)節(jié)的滯環(huán)電流比較PWM和優(yōu)化脈沖控制方案分段對逆變器進行PWM控制。通過設計牽引系統(tǒng)與CANopen網(wǎng)絡的數(shù)據(jù)接口,實現(xiàn)了通信網(wǎng)絡對牽引控制效果的監(jiān)測,并對牽引特性曲線進行分析;選取特性曲線上的特定工作點,對牽引控制效果進行了分析說明。測試結果表明本文討論的牽引矢量控制和PWM控制方案能夠很好地滿足列車運營對牽引轉矩的要求。 目前,該系統(tǒng)正在進行線路運行調試和性能改進,準備交付用戶進行商業(yè)線路運營,具有很好的工程應用價值。

    標簽: CANopen 地鐵列車 轉矩

    上傳時間: 2013-08-02

    上傳用戶:LYNX

  • 非接觸電能傳輸系統(tǒng)的研究.rar

    非接觸電能傳輸技術是一門新興的能量傳輸技術,它集合了電力電子能量傳輸技術、磁場耦合技術以及現(xiàn)代控制理論。由于這種電能傳輸方式?jīng)]有接觸摩擦,可減少對設備的損傷,不會產生易引燃引爆的火花,解決了給移動設備特別是在惡劣環(huán)境下,工作設備的供電問題。在交通運輸、航空航天、機器人、醫(yī)療器械、照明、便攜式電子產品、礦井和水下應用等場合有著廣泛的應用前景。本文對非接觸電能傳輸技術進行了理論和實驗研究。主要研究內容如下: ⑴介紹了非接觸電能傳輸技術的國內外研究現(xiàn)狀,發(fā)展前景,基本原理與所涉及到的關鍵技術。 ⑵通過建立漏感模型,對采用各種補償方式時,補償電容的選擇進行了分析與研究,并對不同補償方式時,負載對系統(tǒng)傳輸效率的影響進行了分析。 ⑶介紹了PWM調制硬開關技術、軟開關技術,比較分析了應用于無接觸電能傳輸系統(tǒng)主變換器的幾種逆變器拓撲結構,詳細分析了移相全橋變換器的工作原理,在此基礎上,對變換器進行改進,提出了基于移相全橋控制的諧振變換器,并對變換器的工作原理進行了詳細分析。 ⑷對系統(tǒng)原副邊主電路的主要參數(shù)進行了分析與設計,對松耦合變壓器的結構選擇、主要參數(shù)進行了分析與設計。 ⑸分別用通用DSP芯片TMS320F2812和專用控制芯片UC3875對系統(tǒng)的控制電路進行了設計。 ⑹對系統(tǒng)進行了仿真研究,在仿真成功的基礎上,采用UC3875控制方案制作了實驗樣機,進行了實驗研究。

    標簽: 非接觸 電能傳輸

    上傳時間: 2013-07-19

    上傳用戶:libenshu01

  • 超高頻射頻識別標簽基準測試研究.rar

    射頻識別(Radio Frequency Identification,RFID)是一種允許非接觸式數(shù)據(jù)采集的自動識別技術。其中工作在超高頻(Ultra High Frequency,UHF)頻段的無源RFID系統(tǒng),由于在物流與供應鏈管理等領域的潛在應用,近年來得到了人們的廣泛關注。這種系統(tǒng)所使用的無源標簽具有識別距離長、體積小、成本低廉等突出特點。目前在市場上出現(xiàn)了各種品牌型號的UHF RFID無源標簽,由于不同品牌型號的標簽在設計與制造工藝上的差異,這些標簽在性能表現(xiàn)上各不相同,這就給終端用戶選擇合適自己應用的標簽帶來了困難。RFID基準測試就是在實際部署RFID系統(tǒng)前對RFID標簽的性能進行科學評估的有效手段。然而為了在常規(guī)實驗室條件下得到準確公正的測試結果,需要對基準測試的性能指標及測試方法學開展進一步的研究。本文正是研究符合EPC Class1 Gen2標準的RFID標簽基準測試。 本文首先分析了當前廣泛應用的超高頻無源RFID標簽基準測試性能指標與測試方法上的局限性與不足之處。例如,在真實的應用環(huán)境中,由于受到各種環(huán)境因素的影響,對同一品牌型號的標簽,很難得到一致的識讀距離測試結果。另外,在某些測試場景中,使用識讀速率作為測試指標,所得到的測試結果數(shù)值非常接近,以致分辨度不足以區(qū)分不同品牌型號標簽的性能差異。在這些分析基礎上,本文把路徑損耗引入了RFID基準測試,通過有限點的測量與數(shù)據(jù)擬合分別得到不同類型標簽的路徑損耗方程,結合讀寫器天線的輻射方向圖,進一步得到各種標簽受限于讀寫器接收靈敏度的覆蓋區(qū)域。無源標簽由于其被動式能量獲取方式,其實際工作區(qū)域仍然受限于前向鏈路。本文通過實驗測試出這些標簽的最小激活功率后,得出了各種標簽在一定讀寫器發(fā)射功率下的激活區(qū)域。完成這些步驟后,根據(jù)這兩種區(qū)域的交集可以確定標簽的工作區(qū)域,從而進行標簽間的比較并達到基準測試的目的,并能找出限制標簽工作范圍的瓶頸。 本文最后從功率損耗的角度研究了標簽之間的相互干擾,為用戶在密集部署RFID標簽的場景中設置標簽之間的最小間隔距離具有重要的參考意義。

    標簽: 超高頻 射頻識別 基準測試

    上傳時間: 2013-04-24

    上傳用戶:hbsunhui

  • 不平衡系統(tǒng)中STATCOM的控制方法和主電路研究.rar

    三相電壓不平衡度是衡量電網(wǎng)電能質量的一個重要指標。在三相系統(tǒng)中,引起電壓不平衡的主要原因是發(fā)電機的輸出電壓不平衡和負載不平衡兩方面,電壓不平衡比較嚴重時,會給系統(tǒng)帶來諸多危害。近年來,STATCOM因其動態(tài)響應速度快,電流諧波含量小,裝置體積小等優(yōu)點,在電壓不平衡補償中的應用越來越廣。 首先本文研究了基于IGCT的STATCOM主電路。為了獲得更高的輸出電壓,通常需要將IGCT串聯(lián)使用。然而在器件串聯(lián)使用時,由于其特性的差異會產生暫態(tài)電壓分配不均衡,導致個別器件上產生過電壓而威脅器件的安全,嚴重時會燒毀器件。因此需要采用均壓電路來保證串聯(lián)結構中電壓的平均分配。本文重點對IGCT串聯(lián)均壓電路和緩沖電路進行了設計,在分析串聯(lián)均壓電路的同時,計算了吸收電容和吸收電阻的取值范圍。而后,對緩沖電路進行了Pspice仿真,通過仿真驗證了均壓電路的工作效果。結果表明,吸收電容和吸收電阻的取值合適,能夠對IGCT的串聯(lián)運行起到很好的保護作用。本文還對100Kvar/660VSTATCOM的主電路進行了參數(shù)設計,對IGCT的型號和各主要元件進行了選擇。 本文重點研究了不平衡系統(tǒng)中STATCOM的控制策略。建立了基于IGCT的STATCOM的數(shù)學模型;根據(jù)STATCOM的電流暫態(tài)模型,對電流電壓進行序分解,并做D—Q坐標變換,建立STATCOM在靜止坐標系下的正、負序數(shù)學模型?;诮⒌呢撔蚰P?,研究STATCOM在不平衡情況下的控制策略,本文采用無差拍控制方法;根據(jù)實際補償時遇到的問題:收斂速度慢、依賴固定的負載模型、魯棒性差等,對無差拍控制方法進行了優(yōu)化設計。該優(yōu)化方法在傳統(tǒng)無差拍的基礎上引入了參考電流觀測器和狀態(tài)觀測器;文中具體設計了這個改進無差拍控制器和其相關電路。經(jīng)分析與仿真驗證了本文提出的優(yōu)化控制方法,將該方法應用于STATCOM不平衡補償器,取得了良好的不平衡補償性能、快速的動態(tài)響應和良好的魯棒性。

    標簽: STATCOM 不平衡

    上傳時間: 2013-06-05

    上傳用戶:abc123456.

  • 基于TMS320F2808的高效雙向DCDC變換器.rar

    雙向DC/DC變換器(Bi-directionalDC/DCconverters)是能夠根據(jù)需要調節(jié)能量雙向傳輸?shù)闹绷?直流變換器。隨著科技的發(fā)展,雙向DC/DC變換器的應用需求越來越多,正逐步應用到無軌電車、地鐵、列車、電動車等直流電機驅動系統(tǒng),直流不間斷電源系統(tǒng),航天電源等場合。一方面,雙向DC/DC變換器為這些系統(tǒng)提供能量,另一方面,又使可回收能量反向給供電端充電,從而節(jié)約能量。 大多數(shù)雙向DC/DC變換器采用復雜的輔助網(wǎng)絡來實現(xiàn)軟開關技術,本文所研究的Buck/Boost雙向的DC/DC變換器從拓撲上解決器件軟開關的問題;由于Buck/Boost雙向DC/DC變換器的電流紋波較大,這會帶來嚴重的電磁干擾,本文結合Buck/Boost雙向DC/DC變換器拓撲與磁耦合技術使電感電流紋波減??;由于在同一頻率下不同負載時電流紋波不同,本文在控制時根據(jù)負載改變PWM頻率,從而使輕載時的電流紋波均較小。 本文所研究的雙向DC/DC變換器采用DSP處理器進行控制,其原因在于:目前沒有專門用于控制該Buck/Boost雙向DC/DC變換器的控制芯片,而DSP具有多路的高分辨率PWM,通過對DSP寄存器的配置可以實現(xiàn)Buck/Boost雙向DC/DC變換器的控制PWM;DSP具有多路高速的A/D轉換接口,并可以通過配合PWM完成對反饋采樣,具備一定的濾波功能。 本文所研究的數(shù)字雙向DC/DC變換器實現(xiàn)了在Buck模式下功率MOSFET的零電壓開通及零電壓關斷,電感電流的交迭使其電感輸出端電流紋波明顯變小,輕載時PWM頻率的提升也使得電流紋波變小。

    標簽: F2808 2808 320F DCDC

    上傳時間: 2013-06-08

    上傳用戶:cy_ewhat

  • 基于DSP的正弦波逆變電源研究.rar

    逆變電源的發(fā)展是和電力電子器件的發(fā)展聯(lián)系在一起的,隨著現(xiàn)代電力電子技術的迅猛發(fā)展,逆變電源在許多領域的應用也越來越廣泛,同時對逆變電源輸出電壓波形質量提出了越來越高的要求。逆變電源輸出波形質量主要包括三個方面:一是輸出穩(wěn)定精度高;二是動態(tài)性能好;三是帶負載適應性強。因此開發(fā)既具有結構簡單,又具有優(yōu)良動、靜態(tài)性能和負載適應性的逆變電源,一直是研究者在逆變電源方面追求的目標。本文對逆變電源三閉環(huán)控制方案、輸出相位控制、逆變電源數(shù)字化控制系統(tǒng)進行研究,以期得到具有高品質和高可靠性的逆變電源。 本文研究了單相全橋逆變電源與三相橋式逆變電源主電路參數(shù),包括逆變器、吸收電路、驅動電路、變壓器和濾波器,并對逆變電源變壓器的偏磁產生原因進行了深入分析,最后給出了有效的抗偏磁措施。針對三相橋式逆變電源通常不能保證三相電壓輸出平衡,研究了一種可以帶不平衡負載的三相逆變電源。研究了逆變電源的控制原理,建立了逆變電源系統(tǒng)動態(tài)模型,在此基礎上對逆變電源的各種控制方案的性能進行了對比研究,從而確定了一種新穎的高性能逆變電源多閉環(huán)控制方案。另外,針對逆變電源輸出相位存在固有滯后問題,采用了一種利用電壓瞬時值內環(huán)對逆變電源滯后的相角進行補償控制的策略,分析表明上述控制策略雖然有效,但無法做到輸出相角穩(wěn)態(tài)無差,對此,提出一種移相控制方案設想,相當于在原多環(huán)控制方案的基礎上加了一個相位控制環(huán)。這樣可以使逆變電源輸出相位誤差得到有效的補償,輸出相位精度更高。文章設計了逆變電源數(shù)字控制系統(tǒng),采用TMS320LF2407A控制產生SPWM波,給出控制系統(tǒng)DSP程序運行流程圖,并用DSP對其進行了實現(xiàn)數(shù)字化。多環(huán)反饋控制系統(tǒng)的采用,使系統(tǒng)具有優(yōu)異的穩(wěn)態(tài)特性、動態(tài)特性和對非線性負載的適應性,使逆變電源的性能得到有效提高。

    標簽: DSP 正弦波逆變電源

    上傳時間: 2013-04-24

    上傳用戶:tianjinfan

  • 基于CMOS工藝的低壓差線性穩(wěn)壓器研究.rar

    近年來,隨著集成電路技術和電源管理技術的發(fā)展,低壓差線性穩(wěn)壓器(LDO)受到了普遍的關注,被廣泛應用于便攜式電子產品如PDA、MP3播放器、數(shù)碼相機、無線電話與通信設備、醫(yī)療設備和測試儀器等中,但國內研究起步晚,市場大部分被國外產品占有,因此,開展本課題的研究具有特別重要的意義。 首先,簡單闡述了課題研究的背景及意義,分析了低壓差線性穩(wěn)壓器(LDO)研究的現(xiàn)狀和發(fā)展趨勢,并提出了設計的預期技術指標。 其次,詳細分析了LDO線性穩(wěn)壓器的理論基礎,包括其結構、各功能模塊的作用、系統(tǒng)工作原理、性能指標定義及設計時對性能指標之間相互矛盾的折衷考慮。 再次,設計了基于自偏置電流源的帶隙基準電壓源,選取PMOS管作為系統(tǒng)的調整元件并計算出了其尺寸,設計了基于CMOS工藝的兩級誤差運算放大器。利用HSPICE工具仿真了基準電壓源和誤差運算放大器的相關性能參數(shù)。 然后,重點分析了穩(wěn)壓器的穩(wěn)定性特征,指出系統(tǒng)存在的潛在不穩(wěn)定性,詳細論述了穩(wěn)定性補償?shù)谋匾?,比較了業(yè)界使用過的幾種穩(wěn)定性補償方法的不足之處,提出了一種基于電容反饋VCCS的補償方法,對系統(tǒng)進行了穩(wěn)定性的補償; 最后,將所設計的模塊進行聯(lián)合,設計了一款基于CMOS工藝的LDO線性穩(wěn)壓器電路,利用HSPICE工具驗證了其壓差電壓、靜態(tài)電流、線性調整率等性能指標,仿真結果驗證了理論分析的正確性、設計方法的可行性。

    標簽: CMOS 工藝 低壓差線性穩(wěn)壓器

    上傳時間: 2013-07-08

    上傳用戶:Wibbly

  • 繞組勵磁同步電機無傳感器矢量控制的研究.rar

    繞組勵磁同步電機具有功率因數(shù)可調、效率高等優(yōu)點,在工業(yè)大功率場合獲得了廣泛應用,因此研究和開發(fā)高性能的繞組勵磁同步電機驅動系統(tǒng)具有重大的經(jīng)濟價值和社會效益。目前開發(fā)高性能繞組勵磁同步電機驅動系統(tǒng)所采用的控制方案主要有兩種:一種是直接轉矩控制(DTFC);另一種是磁場定向矢量控制(FOC)。繞組勵磁同步電機的矢量控制策略具有控制結構簡單,物理概念清晰,電流、轉矩波動小,轉速響應迅速,易實現(xiàn)數(shù)字控制等優(yōu)點。因此,在交流傳動領域中,越來越受到學者的關注。但是,無論在國內還是國外,交直交型繞組勵磁同步電機矢量控制系統(tǒng)的研究還缺乏全面深入的理論研究,還沒有建造起矢量控制系統(tǒng)的理論體系構架。本文對繞組勵磁同步電機矢量控制系統(tǒng)進行了初步的理論探討,并進行了詳細的實踐研究,為以后更深入、廣泛地研究此系統(tǒng),打好堅實的基礎。本論文主要研究內容如下: @@ 通過廣泛的查找文獻,對幾種常見的同步電機傳動系統(tǒng)進行了綜述,分析了同步電機變頻調速原理,在此基礎上,講述了無傳感器技術在同步電機中的應用現(xiàn)狀。無傳感器技術主要有兩大類:基于基波量的檢測方法和基于外加信號的激勵法。隨后,對轉子初始位置的估計進行了綜述,其方法有:基于電機定子鐵芯飽和效應的轉子位置估計,高頻信號注入法,基于定子繞組感應電壓的估計法和基于相電感計算法等。繞組勵磁同步電機轉子初始位置估計的研究還很少。 @@ 對繞組勵磁同步電機矢量控制的理論進行了全面深入地研究,建立起矢量控制的理論體系構架。 @@ 首先,基于磁勢等效原理,將三相靜止交流信號等效變換為兩相旋轉直流信號,將交流電機等效為直流電機進行控制。在Clarke變換和Park變換的基礎上,得到凸極同步電機轉子磁場定向的電壓矩陣方程、功率方程和運動方程。根據(jù)上述方程,繪出dq軸的等值電路及矢量圖,得到狀態(tài)空間描述的dq軸數(shù)學模型。 @@ 其次,根據(jù)模型參考自適應原理,對同步電機轉速進行估計。忽略同步電機d軸阻尼繞組的作用,取同步轉速為零,得到同步電機αβ靜止坐標系下 的數(shù)學模型。將不含有轉子轉速信息的方程作為參考模型,將含有轉速參數(shù)的方程作為可調模型,根據(jù)波波夫超穩(wěn)定性和正性原理,對轉子轉速進行估計。@@ 最后,根據(jù)模型參考自適應估計的轉子轉速,設計磁通觀測器來估計轉子磁通,實現(xiàn)磁通反饋閉環(huán)控制。磁通觀測器采用降維觀測器,僅對轉子磁通分量進行重構,并通過極點配置算法,合理配置觀測器的極點,使觀測器滿足系統(tǒng)的性能指標,達到磁通觀測的目的。 @@ 新穎的空間矢量脈寬調制算法。從空間矢量的基本概念入手,深入分析了定子三相對稱電壓與空間電壓矢量之間的關系。由三相電壓源型逆變器輸出電壓波形得到六個有效開關狀態(tài)矢量,這六個開關矢量和兩個零矢量合成一組等幅不同相的電壓空間矢量,去逼近圓形旋轉磁場。其次,根據(jù)空間電壓矢量所在的扇區(qū),選擇相鄰有效開關矢量,在伏秒平衡的法則下,計算各有效開關矢量的作用時間。并且,探討了扇區(qū)判斷和扇區(qū)過渡問題,定性分析了空間矢量脈寬調制(SVPWM)的性能。最后,根據(jù)每個扇區(qū)中開關矢量作用時間,采用軟件構造法,在TMS320LF2407A硬件上實現(xiàn)了SVPWM。實驗結果表明,該算法簡單易實現(xiàn),能夠有效的提高直流母線的電壓利用率,具有在低頻運行穩(wěn)定,逆變器輸出電流正弦度好等優(yōu)點。 @@ 空間矢量過調制算法的研究。在上述線性調制的基礎上,提出一種基于電壓空間矢量的過調制方法。過調制區(qū)域根據(jù)調制度分成兩種不同的模式,分別為模式Ⅰ(0.907

    標簽: 繞組 勵磁 同步電機

    上傳時間: 2013-07-25

    上傳用戶:gaorxchina

  • 可并網(wǎng)三相光伏逆變裝置的研究與設計.rar

    隨著市場經(jīng)濟和現(xiàn)代化工業(yè)的發(fā)展,能源短缺和環(huán)境污染,已經(jīng)成為制約人類社會健康發(fā)展的兩大重要因素。新能源的開發(fā)與利用愈來愈受到重視,太陽能以其清潔環(huán)保、蘊藏豐富等優(yōu)點逐步得到了開發(fā)利用。光伏逆變電源作為太陽能利用中主要的能量變換裝置,是目前研究和發(fā)展的重要環(huán)節(jié)。 本課題研究的是可并網(wǎng)三相光伏逆變電源,以追求體積小、效率高、精度大、方便實用為目的,采用了DC—HFAC—DC—LFAC三級功率傳輸架構,設計中使用了SPWM技術、SVPWM技術、內高頻環(huán)技術、DSP數(shù)字控制技術和數(shù)字鎖相環(huán)技術等前沿實用技術。 直流DC—DC變換器采用內高頻環(huán)技術,既實現(xiàn)了電氣隔離又大大的減小了裝置體積。這一部分本文不做涉及,本文所涉及的內容為本系統(tǒng)的DC—AC逆變電源部分,本論文的主要內容如下: 首先,分析了幾種DC—AC逆變器的主電路拓撲結構,根據(jù)其優(yōu)缺點與實際應用需要,選擇三相四橋臂結構作為本文主電路結構,滿足了電網(wǎng)負載的不平衡性。在選擇了三相四橋臂結構的基礎上,選取兩種最新的SVM控制方法:基于三態(tài)滯環(huán)的瞬時空間電流相量控制法與二維空間矢量控制法,對兩種方法作出詳細分析比較,根據(jù)實用性原則,選取二維空間矢量控制法作為本文的控制方法。 其次,選取了主控芯片TI公司的TMS320F2812,電路中的功能盡量數(shù)字化實現(xiàn),既控制了電路體積,又大大提高了系統(tǒng)的安全性與可靠性。設計了本系統(tǒng)的控制電路、驅動電路、緩沖電路、保護電路、濾波器電路等系統(tǒng)電路,本系統(tǒng)所有硬件電路均設計完畢。為了驗證設計的正確性,大部分電路都用ORCAD—Pspice仿真軟件進行仿真驗證,小部分電路搭建實際電路,設計電路都能達到系統(tǒng)設計要求。 隨后,簡單介紹了DSP編程環(huán)境CCS。詳細分析了SVPWM的工作原理,并給出二維空間矢量法在DSP中的實現(xiàn)方法。介紹幾種MPPT方法,并選取本課題所選用的方法。 最后,給出系統(tǒng)仿真,分析了重點模塊,得到了仿真結果。 關鍵詞:光伏并網(wǎng)電源、空間矢量脈寬調制、內高頻環(huán)、三相四橋臂

    標簽: 并網(wǎng) 三相 光伏

    上傳時間: 2013-05-19

    上傳用戶:520

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品高清在线| 欧美国产精品va在线观看| 99riav国产精品| 久久另类ts人妖一区二区| 国产午夜精品理论片a级大结局| 亚洲国产日韩综合一区| 亚洲一区精品视频| 亚洲精品一区二区三区婷婷月 | 国产精品久久久久久影视 | 国产精品高精视频免费| 欧美国产一区在线| 欧美ed2k| 欧美日韩国产成人| 欧美激情亚洲激情| 欧美日韩三级一区二区| 欧美日韩中国免费专区在线看| 欧美激情乱人伦| 欧美精品系列| 欧美日韩免费网站| 欧美视频不卡| 国产精品毛片a∨一区二区三区| 欧美午夜无遮挡| 国产精品青草久久| 国产色视频一区| 黄色成人精品网站| 亚洲国产精品电影| 亚洲乱码视频| 一区二区三区鲁丝不卡| 亚洲一区图片| 久久高清福利视频| 久久久一二三| 欧美激情网友自拍| 欧美日韩国产一区二区三区| 欧美视频一区二区三区在线观看| 国产精品成人一区二区三区夜夜夜 | 亚洲视频免费观看| 另类成人小视频在线| 久久爱www| 久久综合久久美利坚合众国| 欧美成人精品影院| 欧美日本久久| 国产麻豆综合| 最新国产精品拍自在线播放| 欧美韩日一区二区三区| 韩国成人理伦片免费播放| 久久一区二区视频| 久久乐国产精品| 狠狠网亚洲精品| 一区二区三区免费看| 99re热这里只有精品免费视频| 中文欧美日韩| 久久国产天堂福利天堂| 欧美激情视频一区二区三区免费| 国产精品wwwwww| 狠狠色丁香久久婷婷综合_中| 亚洲国产毛片完整版 | 欧美11—12娇小xxxx| 欧美午夜精品一区| 久久久亚洲影院你懂的| 黄色av日韩| 一本色道久久综合一区| 老司机免费视频一区二区| 亚洲美女视频在线观看| 欧美性天天影院| 国产综合第一页| 亚洲精品视频中文字幕| 欧美午夜欧美| 欧美成人免费大片| 亚洲一区二区三区国产| 久久久久久夜| 久久久久国产一区二区三区| 亚洲精品国产精品国自产观看浪潮| 一区二区三区产品免费精品久久75| 久久久久九九九九| 国产情人节一区| 亚洲色无码播放| 欧美精品一区在线| 亚洲国产精品成人综合色在线婷婷| 久久成人精品一区二区三区| 国产精品啊啊啊| 一本色道综合亚洲| 91久久久国产精品| 免费国产一区二区| 亚洲尤物精选| 久久爱www久久做| 亚洲国产高清自拍| 国外成人免费视频| 国产人成一区二区三区影院| 欧美日韩91| 欧美剧在线免费观看网站| 久久性天堂网| 亚洲午夜精品一区二区| 日韩视频―中文字幕| 在线日韩精品视频| 激情五月婷婷综合| 国产综合色在线视频区| 欧美日韩中字| 国产精品久久福利| 欧美午夜宅男影院在线观看| 欧美日韩精品免费观看| 欧美在线视频一区二区| 99热这里只有精品8| 久久精品国内一区二区三区| 在线观看国产日韩| 狠狠色狠狠色综合日日小说| 日韩亚洲精品视频| 久久九九久精品国产免费直播| 亚洲一区成人| 噜噜噜在线观看免费视频日韩| 国产欧美一区二区三区另类精品 | 国产毛片一区二区| 女女同性女同一区二区三区91| 久久国产99| 女生裸体视频一区二区三区| 91久久在线播放| 最近看过的日韩成人| 亚洲一区三区电影在线观看| 中文精品视频| 另类图片国产| 日韩视频免费大全中文字幕| 91久久精品国产91久久性色| 欧美成人精品激情在线观看 | 国产精品色婷婷久久58| 亚洲欧美日韩一区二区三区在线观看| 国产日韩一区二区| 久久久女女女女999久久| 亚洲日韩成人| 国产精品一区二区三区乱码 | 亚洲欧美美女| 国产综合网站| 欧美精品在线观看91| 亚洲男人的天堂在线aⅴ视频| 国产一区二区日韩| 欧美精品激情在线| 亚欧美中日韩视频| 亚洲精品乱码久久久久久蜜桃麻豆 | 亚洲精品日本| 国产精品日本一区二区| 久久九九久久九九| 亚洲精品综合久久中文字幕| 国产精品久久久爽爽爽麻豆色哟哟| 久久久久在线| 亚洲一区在线免费观看| 亚洲国产成人精品久久| 国产精品影片在线观看| 欧美精品一区二区三区蜜臀| 久久精品1区| 久久影音先锋| 亚洲在线免费| 亚洲每日在线| 伊人久久婷婷| 国产三级欧美三级| 欧美午夜电影完整版| 麻豆精品在线视频| 欧美亚洲一区| 一区二区三区欧美在线| 亚洲国产国产亚洲一二三| 国产日产欧美精品| 欧美日韩一区二区三区免费看 | 美女精品一区| 亚洲欧美一区二区精品久久久| 91久久线看在观草草青青| 国产在线精品自拍| 国产精品一区二区三区观看| 欧美日韩黄色一区二区| 欧美国产国产综合| 欧美成人黑人xx视频免费观看| 欧美在线在线| 午夜精品久久久久久99热| 亚洲天堂偷拍| 99精品国产在热久久| 亚洲国产欧美一区二区三区同亚洲| 国产色婷婷国产综合在线理论片a| 国产精品成人aaaaa网站| 欧美日韩精选| 欧美日韩在线观看一区二区三区| 男人天堂欧美日韩| 欧美mv日韩mv亚洲| 欧美国产精品人人做人人爱| 黄色成人免费观看| 国产视频在线观看一区二区三区| 国产精品毛片va一区二区三区| 欧美日韩综合在线免费观看| 欧美日韩亚洲天堂| 国产精品劲爆视频| 国产精品免费看| 国产视频一区在线观看| 国产综合色产在线精品| 在线欧美视频| 亚洲黄色性网站| 9久re热视频在线精品| 一区二区三区精品国产| 在线亚洲免费| 西瓜成人精品人成网站| 羞羞答答国产精品www一本 | 欧美1区3d| 欧美日韩国产色视频| 欧美日韩午夜| 国产精品日韩精品欧美精品| 国产亚洲aⅴaaaaaa毛片|